分析 (1)利用余弦定理,建立方程,即可求BM的长;
(2)由正弦定理,先求得AM,AN,再得出△AMN的面积,最后运用三角函数的最值求面积的最小值.
解答 解:(1)在△ABM中,B=30°,AB=$\sqrt{3}$,AM=1,
根据余弦定理得,
AM2=BM2+AB2-2×BM•AB•cosB,
整理得,BM2-3BM+2=0,
解得BM=1或BM=2,;
(2)设∠BAM=θ,在△ABM,△ACN中分别用正弦定理得,
AM=$\frac{AB•sin30°}{sin(150°-θ)}$,AN=$\frac{AB•sin30°}{sin(120°-θ)}$,
而S△AMN=$\frac{1}{2}$•|AM|•|AN|•sin30°
=$\frac{3}{16}$•$\frac{1}{sin(150°-θ)•sin(120°-θ)}$
=$\frac{3}{8}$•$\frac{1}{cos30°-cos(270°-2θ)}$
=$\frac{3}{8}$•$\frac{1}{\frac{\sqrt{3}}{2}+sin2θ}$=$\frac{3}{4\sqrt{3}+8sin2θ}$,
显然,当θ=$\frac{π}{4}$时,即∠BAM=$\frac{π}{4}$,
(S△AMN)min=$\frac{1}{2}$•|AM|•|AN|•sin30°=$\frac{3}{4\sqrt{3}+8}$=$\frac{3(2-\sqrt{3})}{4}$.
点评 本题主要考查了运用余弦定理、正弦定理解三角形,以及三角函数的恒等变换及最值,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 43 | B. | 44 | C. | 45 | D. | 46 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | m<n | B. | n<m | ||
C. | n=m | D. | 不能确定m,n的大小 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com