已知函数的定义域是,是的导函数,且在
内恒成立.
求函数的单调区间;
若,求的取值范围;
(3) 设是的零点,,求证:.
(1);(2) ;(3)详见解析.
解析试题分析:(1)利用求导的思路求解函数的单调区间,从分借助;(2)首先对求导,然后借助已知的不等式恒成立进行转化为在内恒成立,进而采用构造函数的技巧,,通过求导研究其最大值,从而得到的取值范围;(3)借助第一问结论,得到,然后通过变形和构造的思路去证明不等式成立.
试题解析:(1),∵在内恒成立
∴在内恒成立,
∴的单调区间为 4分
(2),∵在内恒成立
∴在内恒成立,即在内恒成立,
设,
,,,,
故函数在内单调递增,在内单调递减,
∴,∴ 8分
(3)∵是的零点,∴由(1),在内单调递增,
∴当时,,即,
∴时,∵,∴,
且即
∴,
∴ 14分
考点:1.函数的单调性;(2)导数的应用;(3)不等式的证明.
科目:高中数学 来源: 题型:解答题
定义在上的函数同时满足以下条件:①函数在上是减函数,在上是增函数;②是偶函数;③函数在处的切线与直线垂直.
(Ⅰ)求函数的解析式;
(Ⅱ)设,若存在使得,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
设函数的图像在处取得极值4.
(1)求函数的单调区间;
(2)对于函数,若存在两个不等正数,当时,函数的值域是,则把区间叫函数的“正保值区间”.问函数是否存在“正保值区间”,若存在,求出所有的“正保值区间”;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
对于函数f(x)(x∈D),若x∈D时,恒有>成立,则称函数是D上的J函数.
(Ⅰ)当函数f(x)=mlnx是J函数时,求m的取值范围;
(Ⅱ)若函数g(x)为(0,+∞)上的J函数,
试比较g(a)与g(1)的大小;
求证:对于任意大于1的实数x1,x2,x3, ,xn,均有g(ln(x1+x2+ +xn))
>g(lnx1)+g(lnx2)+ +g(lnxn).
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知,直线与函数的图像都相切,且与函数的图像的切点的横坐标为1.
(1)求直线的方程及的值;
(2)若(其中是的导函数),求函数的最大值;
(3)当时,求证:.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com