精英家教网 > 高中数学 > 题目详情
已知点P(x0,y0) 在椭圆C:
x2
a2
+
y2
b2
=1
(a>b>0)上,如果经过点P的直线与椭圆只有一个公共点时,称直线为椭圆的切线,此时点P称为切点,这条切线方程可以表示为:
x0x
a2
+
y0y
b2
=1

根据以上性质,解决以下问题:
已知椭圆L:
x2
16
+
y2
9
=1
,若Q(u,v)是椭圆L外一点(其中u,v为定值),经过Q点作椭圆L的两条切线,切点分别为A、B,则直线AB的方程是
 
考点:椭圆的简单性质
专题:计算题,直线与圆,圆锥曲线的定义、性质与方程
分析:设切点A(x1,y1),B(x2,y2),由切线的性质分别写出切线方程,再将点Q代入,由两点确定一条直线,即可得到直线AB的方程.
解答: 解:设切点A(x1,y1),B(x2,y2),
则由切线的性质可得,切线方程分别为
x1x
16
+
y1y
9
=1,
x2x
16
+
y2y
9
=1,
由于椭圆的两条切线都经过点Q(u,v),
则有
x1u
16
+
y1v
9
=1,
x2u
16
+
y2v
9
=1,
由于过A,B有且只有一条直线,
则直线AB的方程为
ux
16
+
vy
9
=1.
故答案为:
ux
16
+
vy
9
=1.
点评:本题考查椭圆的切线的性质,考查切点弦方程的求法,考查运算能力,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,梯形OABC中,OA=OC=2AB=1,OC∥AB,∠AOC=
π
3
,设
OM
OA
ON
OC
(λ>0,μ>0),
OG
=
1
2
OM
+
ON
).
(Ⅰ)当λ=
1
2
,μ=
1
4
时,点O,G,B是否共线,请说明理由.
(Ⅱ)若△OMN的面积为
3
16
,求|
OG
|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系xOy中,圆C的参数方程为
x=4cosθ
y=4sinθ
(θ为参数),直线l经过点P(1,2),倾斜角α=
π
6

(Ⅰ)写出圆C的标准方程和直线l的参数方程;
(Ⅱ)设直线l与圆C相交于A、B两点,求|PA|•|PB|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知在Rt△ABC中,A(-1,0),B(3,0),求:
(1)直角顶点C的轨迹方程;
(2)在(1)的条件下,直角边BC的中点M的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

设圆满足条件:①截y轴所得的弦长为2;②圆心到直线l:x-2y=0的距离为
5
5
;③被x轴分成的两段圆弧,其弧长的比为3:1.
(1)求这个圆的方程
(2)若上述圆的圆心在第一象限,过(-1,3)点的一条光线射到x轴反射后恰好与上述圆相切,求入射光线所在的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

求函数y=-lg2x+6lgx的定义域和值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

依次计算a1=2×(1-
1
4
),a2=2×(1-
1
4
)(1-
1
9
),a3=2×(1-
1
4
)(1-
1
9
)(1-
1
16
),a4=2×(1-
1
4
)(1-
1
9
)(1-
1
16
)(1-
1
25
),猜想an=2×(1-
1
4
)(1-
1
9
)(1-
1
16
)…(1-
1
(n+1)2
)结果并用数学归纳法证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知x、y、z为非零实数,代数式
x
|x|
+
y
|y|
+
z
|z|
+
xyz
|xyz|
的值所成的集合是M,则M=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

平面外两条直线在该平面上的射影互相平行,则这两条直线(  )
A、异面B、平行
C、相交D、平行或异面

查看答案和解析>>

同步练习册答案