精英家教网 > 高中数学 > 题目详情

如图所示,已知AC ⊥平面CDE, BD ∥AC , 为等边三角形,F为ED边上的中点,且

(Ⅰ)求证:CF∥面ABE;
(Ⅱ)求证:面ABE ⊥平面BDE;
(Ⅲ)求该几何体ABECD的体积。

(1)证明:取BE的中点G,由中位线定理CF∥AG得到CF∥面ABE;
(2)由△ECD为等边三角形得到CF⊥ED,又由CF⊥BD得CF⊥面BDE,所以AG⊥面BDE,从而面ABE ⊥平面BDE ;
(3)

解析试题分析:(1)证明:取BE的中点G,连FG∥,AC∥,故CF∥AGCF∥面ABE (4分)
(2)证明:△ECD为等边三角形CF⊥ED又CF⊥BDCF⊥面BDE
CF∥AG
故AG⊥面BDE面ABE ⊥平面BDE           (8分)
(3)几何体ABECD是四棱锥E-ABCD,EH⊥CDEH⊥面ABCD
     (12分)
考点:本题主要考查立体几何中的平行关系、垂直关系,体积计算。
点评:中档题,立体几何题,是高考必考内容,往往涉及垂直关系、平行关系、角、距离、体积的计算。在计算问题中,有“几何法”和“向量法”。利用几何法,要遵循“一作、二证、三计算”的步骤,(1)小题,将立体问题转化成平面问题,这也是解决立体几何问题的一个基本思路。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知在正方体分别是的中点,在棱上,且

(1)求证:; (2)求二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,已知平面是正三角形,且.

(1)设是线段的中点,求证:∥平面
(2)求直线与平面所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,四边形PCBM是直角梯形,.又,直线AM与直线PC所成的角为

(1)求证:
(2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,△ABC中,ACBCABABED是边长为1的正方形,EB⊥底面ABC,若GF分别是ECBD的中点.
(1)求证:GF底面ABC
(2)求证:AC⊥平面EBC

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,四棱锥的底面为一直角梯形,其中底面的中点.

(Ⅰ)求证://平面
(Ⅱ)若平面,求平面与平面夹角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(理科)如图分别是正三棱台ABC-A1B1C1的直观图和正视图,O,O1分别是上下底面的中心,E是BC中点.

(1)求正三棱台ABC-A1B1C1的体积;
(2)求平面EA1B1与平面A1B1C1的夹角的余弦;
(3) 若P是棱A1C1上一点,求CP+PB1的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在四棱锥中,平面ABCD,底面ABCD是菱形,.

(1)求证:平面PAC
(2)若,求PBAC所成角的余弦值;
(3)若PA=,求证:平面PBC⊥平面PDC

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,平面ABCD⊥平面ADEF,其中ABCD为矩形,ADEF为梯形,AF∥DE,AF⊥FE,AF=AD=2 DE=2,M为AD中点.

(Ⅰ) 证明
(Ⅱ) 若二面角A-BF-D的平面角的余弦值为,求AB的长.

查看答案和解析>>

同步练习册答案