精英家教网 > 高中数学 > 题目详情
集合M={x|(x+2)(x-2)≤0},N={x|-1<x<3},则M∩N=(  )
A、{x|-1≤x<2}
B、{x|-1<x≤2}
C、{x|-2≤x<3}
D、{x|-2<x≤2}
考点:交集及其运算
专题:集合
分析:求出M中不等式的解集确定出M,找出M与N的交集即可.
解答: 解:由M中不等式解得:-2≤x≤2,即M={x|-2≤x≤2},
∵N={x|-1<x<3},
∴M∩N={x|-1<x≤2}.
故选:B.
点评:此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知命题p:?x0∈R,x02+ax0+a<0.若命题p是假命题,则实数a的取值范围是(  )
A、[0,4]
B、(0,4)
C、(-∞,0)∪(4,+∞)
D、(-∞,0]∪[4,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

与y=x为同一个函数的是(  )
A、y=
x2
B、y=
x2
x
C、
3x3
D、y=(
x
)2

查看答案和解析>>

科目:高中数学 来源: 题型:

i为虚数单位,(1-i)2=(  )
A、-2 i
B、2 i
C、1-2 i
D、2-2 i

查看答案和解析>>

科目:高中数学 来源: 题型:

i为虚数单位,则(1+i)(1-i)=(  )
A、2 i
B、-2 i
C、2
D、-2

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在底面半径为2,母线长为1的圆锥中内接一个高为
3
的圆柱,求圆柱的表面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四棱锥P-ABCD中,PD⊥平面ABCD,AB∥CD,∠ADC=90°,且CD=2,AD=
2
,AB=PD=1,E在线段PC上移动,且
PE
PC

(1)当λ=
1
3
时,证明:直线PA∥平面EBD;
(2)是否存在λ,使面EBD与面PBC所成二面角为直二面角?若存在,求出λ的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知四棱柱ABCD-A1B1C1D1的底面ABCD是边长为2的菱形,AC∩BD=O,AA1=2
3
,BD⊥A1A,∠BAD=∠A1AC=60°,点M是棱AA1的中点.
(1)求证:A1C∥平面BMD;
(2)求证:A1O⊥平面ABCD;
(3)求三棱锥B-AMD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知中心在原点的椭圆C的右焦点为(
3
,0),右顶点为(2,0),
(Ⅰ)求椭圆C的方程;
(Ⅱ)若直线l:y=kx+
2
与椭圆C恒有两个不同的交点A和B,且
OA
OB
>2(其中O为原点),求k的取值范围.

查看答案和解析>>

同步练习册答案