精英家教网 > 高中数学 > 题目详情

(几何证明选讲)

如图所示,已知PA与⊙O相切,A为切点,PBC为割线,,弦CD∥AP,AD、BC相交于E点,F为CE上一点,且DE2=EF·EC.

(1)求证:ÐP=ÐEDF;

(2)求证:CE·EB=EF·EP;

(3)若CE : BE=3 : 2,DE=6,EF= 4,求PA的长.

:(Ⅰ)略 (Ⅱ) 略(Ⅲ) PA=


解析:

: (1)∵DE2=EF·EC,     ∴DE : CE=EF: ED.

∵ÐDEF是公共角,   ∴ΔDEF∽ΔCED.  ∴ÐEDF=ÐC.

∵CD∥AP,    ∴ÐC=Ð P.     ∴ÐP=ÐEDF.………3分

(2)∵ÐP=ÐEDF,    ÐDEF=ÐPEA,

  ∴ΔDEF∽ΔPEA. ∴DE : PE=EF : EA.即EF·EP=DE·EA.

∵弦AD、BC相交于点E,∴DE·EA=CE·EB.∴CE·EB=EF·EP.………6分

(3)∵DE2=EF·EC,DE=6,EF= 4,   ∴EC=9.     ∵CE : BE=3 : 2,    ∴BE=6.

∵CE·EB=EF·EP,∴9×6=4×EP.解得:EP=.  ∴PB=PE-BE=, PC=PE+EC=

由切割线定理得:PA2=PB·PC,∴PA2=×.∴PA=.………10分

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

选做题(请考生在以下三个小题中任选一题作答,如果多做,则按所做的第一题评阅记分)
(1)(不等式选讲)已知函数f(x)=log2(|x-1|+|x-5|-a),当函数f(x)的定义域为R时,则实数a的取值范围为
(-∞,4)
(-∞,4)

(2)(几何证明选讲)如图,AB是半圆O的直径,点C在半圆上,CD⊥AB,垂足为D,且AD=5DB,设∠COD=θ,则tanθ的值为
5
2
5
2


(3)(坐标系与参数方程)圆O1和圆O2的极坐标方程分别为ρ=4cosθ,ρ=-4sinθ,则经过两圆圆心的直线的直角坐标方程为
y=x+2
y=x+2

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•蓟县一模)(几何证明选讲)如图,点A、B、C都在⊙O上,过点C的切线交AB的延长线于点D,若AB=5,BC=3,CD=6,则线段AC的长为
4.5
4.5

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•江苏一模)(选修4-1 几何证明选讲)
如图,已知CB是⊙O的一条弦,A是⊙O上任意一点,过点A作⊙O的切线交直线CB于点P,D为⊙O上一点,且∠ABD=∠ABP.
求证:AB2=BP•BD.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)(几何证明选讲)如图,AB是半圆O的直径,点C在半圆上,CD⊥AB,垂足为D,且AD=5DB,设∠COD=θ,则tanθ的值为
5
2
5
2

(2)(坐标系与参数方程)圆O1和圆O2的极坐标方程分别为ρ=4cosθ,ρ=-4sinθ,则经过两圆圆心的直线的直角坐标方程为
x-y-2=0
x-y-2=0

(3)(不等式选讲)若不等式|3x-b|<4的解集中的整数有且仅有0,1,2,则b的取值范围是
(2,4)
(2,4)

查看答案和解析>>

科目:高中数学 来源: 题型:

从A,B,C,D四个中选做2个A.选修4-1(几何证明选讲)
如图,AB是半圆的直径,C是AB延长线上一点,CD切半圆于点D,CD=2,DE⊥AB,垂足为E,且E是OB的中点,求BC的长.
B.选修4-2(矩阵与变换)
将曲线xy=1绕坐标原点按逆时针方向旋转45°,求所得曲线的方程.
C.选修4-4(坐标系与参数方程)
求直线
x=1+2t
y=1-2t
(t为参数)被圆
x=3cosa
y=3sina
(α为参数)截得的弦长.
D.选修4-5(不等式选讲)
已知x,y均为正数,且x>y,求证:2x+
1
x2-2xy+y2
≥2y+3

查看答案和解析>>

同步练习册答案