精英家教网 > 高中数学 > 题目详情
已知数列1
1
2
,3
1
4
,5
1
8
,7
1
16
,…则其前n项和Sn为(  )
A、n2+1-
1
2n
B、n2+2-
1
2n
C、n2+1-
1
2n-1
D、n2+2-
1
2n-1
考点:数列的求和
专题:等差数列与等比数列
分析:利用等差数列与等比数列的前n项和公式即可得出.
解答: 解:Sn=1+3+5+…+(2n-1)+
1
2
+
1
4
+…+
1
2n

=
n(1+2n-1)
2
+
1
2
[1-(
1
2
)n]
1-
1
2

=n2+1-
1
2n

故选:A.
点评:本题考查了等差数列与等比数列的前n项和公式,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,从气球A测得正前方的济南全运会东荷、西柳两个场馆B、C的俯角分别为α、β,此时气球的高度为h,则两个场馆B、C间的距离为(  )
A、
hsinαsinβ
sin(α-β)
B、
hsin(β-α)
sinαsinβ
C、
hsinα
sinβsin(α-β)
D、
hsinβ
sinαsin(α-β)

查看答案和解析>>

科目:高中数学 来源: 题型:

如图过拋物线y2=2px(p>0)的焦点F的直线依次交拋物线及准线于点A,B,C,若|BC|=2|BF|,且|AF|=3,则拋物线的方程为(  )
A、y2=
3
2
x
B、y2=3x
C、y2=
9
2
x
D、y2=9x

查看答案和解析>>

科目:高中数学 来源: 题型:

过点P(1,1)作圆x2+y2=1的切线方程为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知各项不为零的数列{an}的前n项和为Sn,且满足Sn=a1(an-1)
(1)求数列{an}的通项公式;
(2)设数列{bn}满足anbn=log2an,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

在等比数列{an}中,公比q=2,且a2+a3=12.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)求数列{an}的前2015项和S2015

查看答案和解析>>

科目:高中数学 来源: 题型:

某创业投资公司拟投资开发某种新能源产品,估计能获得投资收益的范围是[10,100](单位:万元).现准备制定一个对科研课题组的奖励方案:奖金y(单位:万元)随投资收益x(单位:万元)的增加而增加,且奖金不超过5万元,同时奖金不超过投资收益的20%.
(Ⅰ)若建立函数模型y=f(x)制定奖励方案,请你根据题意,写出奖励模型函数应满足的条件;
(Ⅱ)现有两个奖励函数模型:(1)y=
1
20
x+1;(2)y=log2x-2.试分析这两个函数模型是否符合公司要求.

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系中,对于函数y=f(x)的图象上不重合的两点A,B,若A,B关于原点对称,则称点对(A,B)是函数y=f(x)的一组“奇点对”(规定(A,B)与(B,A)是相同的“奇点对”),函数f(x)=
lg
1
x
(x>0)
sin
1
2
x
(x<0)
的“奇点对”的组数是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1
3x+
3

(1)若a+b=1,求证:f(a)+f(b)为定值;
(2)设S=f(-5)+f(-4)+…+f(0)+…+f(5)+f(6),求S的值.

查看答案和解析>>

同步练习册答案