精英家教网 > 高中数学 > 题目详情

【题目】设f(x)是定义在R上的奇函数,且满足x>0时,f(x)+xf'(x)>0,f(2)=0,则不等式f(x)>0的解集为

【答案】(﹣2,0)∪(2,+∞)
【解析】解:根据题意,令g(x)=xf(x),则其导数g′(x)=f(x)+xf'(x),

又由当x>0时,f(x)满足f(x)+xf'(x)>0,则有g′(x)>0,即函数g(x)在(0,+∞)上为增函数,

若f(2)=0,则g(2)=2f(2)=0,

函数g(x)在(0,+∞)上为增函数,

则在(0,2)上,g(x)=xf(x)<0,在(2,+∞)上,g(x)=xf(x)>0,

又由x>0,则有在(0,2)上,f(x)<0,在(2,+∞)上,f(x)>0,

又由f(x)是定义在R上的奇函数,

则在(﹣2,0)上,f(x)>0,在(﹣∞,﹣2)上,f(x)<0,

综合可得:不等式f(x)>0的解集为(﹣2,0)∪(2,+∞)

所以答案是:(﹣2,0)∪(2,+∞)

【考点精析】通过灵活运用利用导数研究函数的单调性,掌握一般的,函数的单调性与其导数的正负有如下关系: 在某个区间内,(1)如果,那么函数在这个区间单调递增;(2)如果,那么函数在这个区间单调递减即可以解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知圆的圆心为半径为1,点.

写出圆的标准方程并判断点与圆的位置关系

若一条光线从点射出轴反射后反射光线经过圆心求入射光线所在直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知abc为某一直角三角形的三条边长,c为斜边.若点(mn)在直线ax+by+2c=0上,则m2+n2的最小值是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥的底面是菱形,平面的中点.

(1)求证:平面平面

(2)棱上是否存在一点使得平面若存在,确定的位置并加以证明;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】阅读下边的程序框图,若输入的n100,则输出的变量ST的值依次是_____.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】求适合下列条件的圆锥曲线的标准方程:
(1)椭圆经过A(2, ),B( );
(2)与双曲线C1 有公共渐近线,且焦距为8的双曲线C2方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如果函数在其定义域内存在实数,使得成立,则称函数为“可拆分函数”.

(1)试判断函数是否为“可拆分函数”?并说明你的理由;

(2)证明:函数为“可拆分函数”;

(3)设函数为“可拆分函数”,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知学生的总成绩与数学成绩之间有线性相关关系,下表给出了5名同学在一次考试中的总成绩和数学成绩(单位:).

   学生编号

成绩  

1

2

3

4

5

总成绩/x

482

383

421

364

362

数学成绩/y

78

65

71

64

61

(1)求数学成绩与总成绩的回归直线方程.

(2)根据以上信息,如果一个学生的总成绩为450,试估计这个学生的数学成绩;

(3)如果另一位学生的数学成绩为92,试估计其总成绩是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,角A,B,C所对的边分别为a,b,c,若1+ =
(1)求角A的大小;
(2)若函数f(x)=2sin2(x+ )﹣ cos2x,x∈[ ],在x=B处取到最大值a,求△ABC的面积.

查看答案和解析>>

同步练习册答案