【题目】设f(x)是定义在R上的奇函数,且满足x>0时,f(x)+xf'(x)>0,f(2)=0,则不等式f(x)>0的解集为 .
【答案】(﹣2,0)∪(2,+∞)
【解析】解:根据题意,令g(x)=xf(x),则其导数g′(x)=f(x)+xf'(x),
又由当x>0时,f(x)满足f(x)+xf'(x)>0,则有g′(x)>0,即函数g(x)在(0,+∞)上为增函数,
若f(2)=0,则g(2)=2f(2)=0,
函数g(x)在(0,+∞)上为增函数,
则在(0,2)上,g(x)=xf(x)<0,在(2,+∞)上,g(x)=xf(x)>0,
又由x>0,则有在(0,2)上,f(x)<0,在(2,+∞)上,f(x)>0,
又由f(x)是定义在R上的奇函数,
则在(﹣2,0)上,f(x)>0,在(﹣∞,﹣2)上,f(x)<0,
综合可得:不等式f(x)>0的解集为(﹣2,0)∪(2,+∞)
所以答案是:(﹣2,0)∪(2,+∞)
【考点精析】通过灵活运用利用导数研究函数的单调性,掌握一般的,函数的单调性与其导数的正负有如下关系: 在某个区间内,(1)如果,那么函数在这个区间单调递增;(2)如果,那么函数在这个区间单调递减即可以解答此题.
科目:高中数学 来源: 题型:
【题目】已知圆的圆心为,半径为1,点.
(Ⅰ)写出圆的标准方程,并判断点与圆的位置关系;
(Ⅱ)若一条光线从点射出,经轴反射后,反射光线经过圆心,求入射光线所在直线的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四棱锥的底面是菱形,,平面,是的中点.
(1)求证:平面平面;
(2)棱上是否存在一点,使得平面?若存在,确定的位置并加以证明;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】求适合下列条件的圆锥曲线的标准方程:
(1)椭圆经过A(2, ),B( , );
(2)与双曲线C1: 有公共渐近线,且焦距为8的双曲线C2方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如果函数在其定义域内存在实数,使得成立,则称函数为“可拆分函数”.
(1)试判断函数是否为“可拆分函数”?并说明你的理由;
(2)证明:函数为“可拆分函数”;
(3)设函数为“可拆分函数”,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知学生的总成绩与数学成绩之间有线性相关关系,下表给出了5名同学在一次考试中的总成绩和数学成绩(单位:分).
学生编号 成绩 | 1 | 2 | 3 | 4 | 5 |
总成绩/x | 482 | 383 | 421 | 364 | 362 |
数学成绩/y | 78 | 65 | 71 | 64 | 61 |
(1)求数学成绩与总成绩的回归直线方程.
(2)根据以上信息,如果一个学生的总成绩为450分,试估计这个学生的数学成绩;
(3)如果另一位学生的数学成绩为92分,试估计其总成绩是多少?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在△ABC中,角A,B,C所对的边分别为a,b,c,若1+ = .
(1)求角A的大小;
(2)若函数f(x)=2sin2(x+ )﹣ cos2x,x∈[ , ],在x=B处取到最大值a,求△ABC的面积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com