精英家教网 > 高中数学 > 题目详情

【题目】已知函数

(I) 讨论函数的单调区间;

(II)当时,若函数在区间上的最大值为3,求的取值范围.

【答案】(Ⅰ)当时, 内单调递增, 内单调递减;当时, 单调递增;当时, 内单调递增, 内单调递减;()即的取值范围是

【解析】试题分析:

()对函数求导可得

分类讨论可得当时, 内单调递增, 内单调递减;当时, 单调递增;当时, 内单调递增, 内单调递减;

()时,函数的解析式讨论函数的单调性可得,且的取值范围是.

试题解析:

I

i)当,即时, 单调递增.

ii)当,即时,

内单调递增;

内单调递减.

iii)当,即时,

内单调递增;

内单调递减.

综上,当时, 内单调递增, 内单调递减;

时, 单调递增;

时, 内单调递增,

内单调递减.(其中

II)当时,

,得

变化情况列表如下:

1

0

0

极大

极小

由此表可得

故区间内必须含有,即的取值范围是

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某上市股票在30天内每股的交易价格P(元)与时间t(天)组成有序数对(t,P),点(t,P)落在下图中的两条线段上,该股票在30天内(包括30天)的日交易量Q(万股)与时间t(天)的部分数据如下表所示.

第t天

4

10

16

22

Q(万股)

36

30

24

18


(1)根据提供的图象,写出该种股票每股交易价格P(元)与时间t(天)所满足的函数关系式;
(2)根据表中数据确定日交易量Q(万股)与时间t(天)的一次函数关系式;
(3)在(2)的结论下,用y(万元)表示该股票日交易额,写出y关于t的函数关系式,并求出这30天中第几日交易额最大,最大值为多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知△ABC的三边长a,b,c依次成等差数列,a2+b2+c2=21,则b的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知 .

(1)若为真命题,求实数的取值范围;

2)若成立的充分不必要条件,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)= ,h(x)=2f(x)﹣ax﹣b.
(Ⅰ)判断f(x)的奇偶性,并说明理由;
(Ⅱ)若f(x)为奇函数,且h(x)在[﹣1,1]有零点,求实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】《九章算术》中的“两鼠穿墙题”是我国数学的古典名题:“今有垣厚若干尺,两鼠对穿,大鼠日一尺,小鼠也日一尺,大鼠日自倍,小鼠日自半,问何日相逢,各穿几何?”题意是:“有两只老鼠从墙的两边打洞穿墙,大老鼠第一天进一尺,以后每天加倍;小老鼠第一天也进一尺,以后每天减半.”如果墙足够厚,Sn为前n天两只老鼠打洞长度之和,则Sn=尺.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知 ,sinα=7m﹣3,sinβ=1﹣m,若α+β<2π,则实数m的取值范围为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,点B是以AC为直径的圆周上的一点,PA=AB=BC,AC=4,PA⊥平面ABC,点E为PB中点.

(Ⅰ)求证:平面AEC⊥平面PBC;
(Ⅱ)求直线AE与平面PAC所成角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了了解某学校高二年级学生的物理成绩,从中抽取n名学生的物理成绩(百分制)作为样本,按成绩分成 5组:[50,60),[60,70),[70,80),[80,90),[90,100],频率分布直方图如图所示.成绩落在[70,80)中的人数为20.

男生

女生

合计

优秀

不优秀

合计

(Ⅰ)求a和n的值;

(Ⅱ)根据样本估计总体的思想,估计该校高二学生物理成绩的平均数和中位数m;

(Ⅲ)成绩在80分以上(含80分)为优秀,样本中成绩落在[50,80)中的男、女生人数比为1:2,成绩落在[80,100]中的男、女生人数比为3:2,完成2×2列联表,并判断是否有95%的把握认为物理成绩优秀与性别有关.

参考公式和数据:K2=

P(K2≥k)

0.50

0.05

0.025

0.005

k

0.455

3.841

5.024

7.879

查看答案和解析>>

同步练习册答案