精英家教网 > 高中数学 > 题目详情

(本小题满分13分)

设函数,已知是奇函数.

(Ⅰ)求的值;     (Ⅱ)求的单调区间与极值.

 

【答案】

(Ⅰ)b=3;  c=0

(Ⅱ)函数g(x)的单调递增区间是x∈(-∞,- )和(,+∞)

函数g(x)的单调递减区间是x∈(- ,)

且:当x=-时函数g(x)取得极大值g(-)=4

当x=时函数g(x)取得极小值g()=-4

【解析】(Ⅰ)∵f(x)=x+bx+cx(xR),    ∴f=3x+2bx+c

∴g(x)=x+(b-3)x+(c-2b)x-c;由奇函数定义知:

G(-x)=-x+(b-3)x-(c-2b)x+c=-x-(b-3x)-(c-2b)x+c=-g(x)

b-3=-(b-3);  -(c-2b)=-(c-2b);  -c=c

解得:b=3;  c=0

(Ⅱ) 由(Ⅰ) 得:g(x)=x-6x, 令g=3x-6x=0

得:x=±;又由g>0得:x∈(-∞,- )∪(,+∞)

由g<0得:x∈(- ,)

∴函数g(x)的单调递增区间是x∈(-∞,- )和(,+∞)

函数g(x)的单调递减区间是x∈(- ,)

且:当x=-时函数g(x)取得极大值g(-)=4

当x=时函数g(x)取得极小值g()=-4

 

练习册系列答案
相关习题

科目:高中数学 来源:2015届江西省高一第二次月考数学试卷(解析版) 题型:解答题

(本小题满分13分)已知函数.

(1)求函数的最小正周期和最大值;

(2)在给出的直角坐标系中,画出函数在区间上的图象.

(3)设0<x<,且方程有两个不同的实数根,求实数m的取值范围.

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年福建省高三年级八月份月考试卷理科数学 题型:解答题

(本小题满分13分)已知定义域为的函数是奇函数.

(1)求的值;(2)判断函数的单调性;

(3)若对任意的,不等式恒成立,求k的取值范围.

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年福建省高三年级八月份月考试卷理科数学 题型:解答题

(本小题满分13分)已知集合, ,.

(1)求(∁; (2)若,求的取值范围.

 

查看答案和解析>>

科目:高中数学 来源:河南省09-10学年高二下学期期末数学试题(理科) 题型:解答题

 

(本小题满分13分)如图,正三棱柱的所有棱长都为2,的中点。

(Ⅰ)求证:∥平面

(Ⅱ)求异面直线所成的角。www.7caiedu.cn           

 

 

 

 

 

 


[来源:KS5

 

 

 

 

U.COM

查看答案和解析>>

科目:高中数学 来源:2010-2011学年福建省高三5月月考调理科数学 题型:解答题

(本小题满分13分)

已知为锐角,且,函数,数列{}的首项.

(1) 求函数的表达式;

(2)在中,若A=2,,BC=2,求的面积

(3) 求数列的前项和

 

 

查看答案和解析>>

同步练习册答案