精英家教网 > 高中数学 > 题目详情
某学校为了解高三年级学生寒假期间的学习情况,抽取甲、乙两班,调查这两个班的学生在寒假期间每天平均学习的时间(单位:小时),统计结果绘成频率分布直方图(如图).已知甲、乙两班学生人数相同,甲班学生每天平均学习时间在区间[2,4]的有8人.

(1)求直方图中a的值及甲班学生每天平均学习时间在区间(10,12]的人数;
(2)从甲、乙两个班每天平均学习时间大于10个小时的学生中任取4人参加测试,设4人中甲班学生的人数为ξ,求ξ的分布列和数学期望.
考点:离散型随机变量的期望与方差,频率分布直方图,离散型随机变量及其分布列
专题:概率与统计
分析:(1)由直方图能求出a的值及甲班学生每天平均学习时间在区间(10,12]的人数.
(2)由已知得ξ的所有可能取值为0,1,2,3,分别求出相应的概率,由此能求出ξ的分布列和数学期望.
解答: 解:(1)由直方图知,(0.150+0.125+0.100+0.0875+a)×2=1,
解得a=0.0375,
因为甲班学习时间在区间[2,4]的有8人,
所以甲班的学生人数为
8
0.2
=40

所以甲、乙两班人数均为40人.
所以甲班学习时间在区间(10,12]的人数为40×0.0375×2=3(人).
(2)乙班学习时间在区间(10,12]的人数为40×0.05×2=4(人).
由(1)知甲班学习时间在区间(10,12]的人数为3人,
在两班中学习时间大于10小时的同学共7人,
ξ的所有可能取值为0,1,2,3.
P(ξ=0)=
C
0
3
C
4
4
C
4
7
=
1
35

P(ξ=1)=
C
1
3
C
3
4
C
4
7
=
12
35

P(ξ=2)=
C
2
3
C
2
4
C
4
7
=
18
35

P(ξ=3)=
C
3
3
C
1
4
C
4
7
=
4
35

所以随机变量ξ的分布列为:
ξ0123
P
1
35
12
35
18
35
4
35
Eξ=0×
1
35
+1×
12
35
+2×
18
35
+3×
4
35
=
12
7
点评:本题考查频率分布直方图的应用,考查离散型随机变量的分布列和数学期望的求法,是中档题,解题时要认真审题,在历年高考中都是必考题型之一.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若y=a-bsinx的最大值为
3
2
,最小值为-
1
2
,求y=2asinx+b的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:

四棱锥S-ABCD的底面是边长为2的正方形,顶点S在底面的射影为正方形的中心O,且SO=4,E是边BC的中点,动点P在四棱锥的表面上运动,并且总保持PE⊥AC,则动点P的轨迹的周长为(  )
A、7
2
B、6
2
C、4
2
D、
2

查看答案和解析>>

科目:高中数学 来源: 题型:

山水城市镇江有“三山”--金山、焦山、北固山,一位游客游览这三个景点的概率都是0.5,且该游客是否游览这三个景点相互独立,用ξ表示这位游客游览的景点数和没有游览的景点数差的绝对值,求ξ的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

k2,m(m∈N),3,5的平均数为3,平面上的直线l过点(0,1),其斜率为等可能取k的值,用X表示坐标原点到l距离的平方,则随机变量X的数学期望E(X)等于(  )
A、
103
270
B、
107
270
C、
111
270
D、
119
270

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,向量
a
b
c
在由单位长度为1的正方形组成的网格中,则
a
•(
b
+
c
)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=log
 
 
2
(a-2x)+x-2,若f(x)存在零点,则实数a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

某市居民阶梯电价标准如下:第一档电量(用电量不超过180千瓦时)的电价(简称为基础电价)为0.57元、千瓦时;第二档电量(超过180千瓦时,不超过400千瓦时)的电价每千瓦时比基础电价提高0.05元;第三档电量(400千瓦时以上)的电价每千瓦时比基础电价提高0.30元(具体见表格).若某月某用户用电量为x千瓦时,需交费y元.
 用电量(单位:千瓦时)用电价格(单位:元/千瓦时)
第一档180及以下部分0.57
第二档超180至400部分0.62
第三档超400部分0.87
(Ⅰ)求y关于x的函数关系式;
(Ⅱ)若该用户某月交电费为115元,求该用户该月的用电量.

查看答案和解析>>

科目:高中数学 来源: 题型:

某供货商拟从码头A发货至其对岸l的两个商场B,C处,通常货物先由A处船运至BC之间的中转站D,再利用车辆转运.如图,码头A与两商场B,C的距离相等,两商场间的距离为20千米,且∠BAC=
π
2
.若一批货物从码头A
至D处的运费为100元/千米,这批货到D后需分别发车2辆、4辆转运至B、C处,每辆汽车运费为25元/千米.设∠ADB=α,该批货总运费为S元.
(Ⅰ)写出S关于α的函数关系式,并指出α的取值范围;
(Ⅱ)当α为何值时,总运费S最小?并求出S的最小值.

查看答案和解析>>

同步练习册答案