精英家教网 > 高中数学 > 题目详情

【题目】如图,已知正方形ABCD的中心为E(﹣1,0),一边AB所在的直线方程为x+3y﹣5=0,求其它三边所在的直线方程.

【答案】解:E到直线x+3y﹣5=0距离是 = ,所以E到另三边距离也是
有一条边CD与AB:x+3y﹣5=0平行,设为x+3y+a=0,则 ,即|a﹣1|=6
∴a=﹣5,a=7 其中a=﹣5就是已知的
∴CD方程为:x+3y+7=0
另两条和他们垂直,所以斜率为3,设为:3x﹣y+b=0
,即|b﹣3|=6
∴b=9,b=﹣3
∴AD的方程:3x﹣y﹣3=0;BC的方程:3x﹣y+9=0
【解析】先求正方形中心E(﹣1,0)到直线x+3y﹣5=0的距离,然后设出所求直线方程,利用正方形的中心到三边等距离,分别求出所求直线的方程.
【考点精析】认真审题,首先需要了解一般式方程(直线的一般式方程:关于的二元一次方程(A,B不同时为0)).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,矩形ABCD所在的半平面和直角梯形CDEF所在的半平面成60°的二面角,DE∥CF,CD⊥DE,AD=2, ,CF=6,∠CFE=45°.
(Ⅰ)求证:BF∥平面ADE;
(Ⅱ)在线段CF上求一点G,使锐二面角B﹣EG﹣D的余弦值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,李先生家住H小区,他工作在C科技园区,从家开车到公司上班路上有L1、L2两条路线,L1路线上有A1、A2、A3三个路口,各路口遇到红灯的概率均为 ;L2路线上有B1、B2两个路口,各路口遇到红灯的概率依次为

(1)若走L1路线,求最多遇到1次红灯的概率;
(2)若走L2路线,求遇到红灯次数X的数学期望;
(3)按照“平均遇到红灯次数最少”的要求,请你帮助李先生从上述两条路线中选择一条最好的上班路线,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥P﹣ABCD底面是正方形,PA⊥底面ABCD,E,F分别为PA,PD中点.

(1)求证:EF∥面PBC
(2)求证:平面PBC⊥平面PAB.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设a,b均大于0,且 + =1.求证:对于每个n∈N* , 都有(a+b)n﹣(an+bn)≥22n﹣2n+1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆C与两平行直线 x﹣y﹣8=0和x﹣y+4=0相切,圆心在直线2x+y﹣10=0上.
(1)求圆C的方程.
(2)过原点O做一条直线,交圆C于M,N两点,求OM*ON的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图是一几何体的平面展开图,其中ABCD为正方形,EF分别为PAPD的中点,

在此几何体中,给出下面四个结论:

直线BE与直线CF异面; 直线BE与直线AF异面;

直线EF平面PBC平面BCE平面PAD.

其中正确的有(  )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 .

(1)求的单调区间;

(2)当时,,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在长方体ABCD﹣A1B1C1D1中,AB=BC=1,AA1=2,E为BB1中点.

(1)证明:AC⊥D1E;
(2)求DE与平面AD1E所成角的正弦值;
(3)在棱AD上是否存在一点P,使得BP∥平面AD1E?若存在,求DP的长;若不存在,说明理由.

查看答案和解析>>

同步练习册答案