精英家教网 > 高中数学 > 题目详情

【题目】已知向量 =(cos x,sin x), =(cos ,﹣sin ),且x∈[﹣ ]
(1)求 及| + |;
(2)若f(x)= ﹣| + |,求f(x)的最大值和最小值.

【答案】
(1)解:∵ =(cos x,sin x), =(cos ,﹣sin ),

=cos x cos ﹣sin xsin =cos2x.

| + |=|(cos x,sin x)+(cos ,﹣sin )|=|( )|

= = =2cosx(x∈[﹣ ])


(2)解:∵ =cos2x,| + |=2cosx,

∴f(x)= ﹣| + |=cos2x﹣2cosx=2cos2x﹣2cosx﹣1.

令t=cosx,

∵x∈[﹣ ],∴t∈[ ,1].

∴y=f(x)=

∴当t= ,即x= 时,y有最小值为

当t=1,即x=0时,y有最大值为


【解析】(1)由数量积的坐标运算结合两角和的余弦求 ;由向量的坐标加法运算求 + ,然后利用模的公式求模;(2)把(1)中的结果代入f(x)= ﹣| + |,整理后利用配方法结合x的范围得答案.
【考点精析】通过灵活运用三角函数的最值,掌握函数,当时,取得最小值为;当时,取得最大值为,则即可以解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在锐角△ABC中,内角A,B,C的对边分别为a,b,c,且2asinB= b.
(1)求角A的大小;
(2)若a=6,b+c=8,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,正方形与梯形所在的平面互相垂直,

的中点.

(1)求证: 平面

(2)求证: 平面

(3)求平面与平面所成锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,角A,B,C所对的边分别为a,b,c,cos2B﹣5cos(A+C)=2.
(1)求角B的值;
(2)若cosA= ,△ABC的面积为10 ,求BC边上的中线长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若一个四位数的各位数字相加和为,则称该数为“完美四位数”,如数字“”.试问用数字组成的无重复数字且大于的“完美四位数”有( )个

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】两个非零向量 不共线.
(1)若 = + =2 +8 =3( ),求证:A、B、D三点共线;
(2)求实数k使k + 与2 +k 共线.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设实数x,y满足约束条件 ,若目标函数z=ax+by(a>0,b>0)的最大值为10,则a2+b2的最小值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若关于x的不等式ax2+bx+c>0的解集为{x|﹣1<x<2},则关于x的不等式cx2+bx+a>0的解集是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】汽车厂生产A,B,C三类轿车,每类轿车均有舒适型和标准型两种型号,某月的产量如下表(单位:辆);

轿车A

轿车B

轿车C

舒适型

100

150

z

标准型

300

450

600

按类用分层抽样的方法在这个月生产的轿车中抽取50辆,其中有A类轿车10辆.
(1)求z的值;
(2)用分层抽样的方法在C类轿车中抽取一个容量为5的样本,将该样本看成一个总体,从中任取2辆,求至少有1辆舒适型轿车的概率;
(3)用随机抽样的方法从B类舒适型轿车中抽取8辆,经检测它们的得分如下:9.4,8.6,9.2,9.6,8.7,9.3,9.0,8.2.把这8辆轿车的得分看成一个总体,从中任取一个数,求该数与样本平均数之差的绝对值不超过0.5的概率.

查看答案和解析>>

同步练习册答案