精英家教网 > 高中数学 > 题目详情

【题目】已知抛物线的焦点为,其准线与轴的交点为,过点作直线与抛物线交于两点.若以为直径的圆过点,则的值为________

【答案】4

【解析】

设直线方程,与抛物线方程联立,借助于求出点AB的横坐标,利用抛物线的定义,即可求出|AF||BF|

解:假设k存在,设AB方程为:ykx1),

与抛物线y24x联立得k2x22x+1)=4x

k2x2﹣(2k2+4x+k20

设两交点为Ax2y2),Bx1y1),

为直径的圆过点,

∴∠QBA90°,

∴(x12)(x1+2+y120

x12+y124

x12+4x110x10),

x12

x1x21

x22

|AF||BF|=(x2+1)﹣(x1+1)=4

故答案为:4

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】2014年7月18日15时,超强台风“威马逊”登陆海南省.据统计,本次台风造成全省直接经济损失119.52亿元.适逢暑假,小明调查住在自己小区的50户居民由于台风造成的经济损失,作出如下频率分布直方图:

经济损失

4000元以下

经济损失

4000元以上

合计

捐款超过500元

30

捐款低于500元

6

合计

(1)台风后区委会号召小区居民为台风重灾区捐款,小明调查的50户居民捐款情况如上表,在表格空白处填写正确数字,并说明是否有以上的把握认为捐款数额是否多于或少于500元和自身经济损失是否到4000元有关?

(2)台风造成了小区多户居民门窗损坏,若小区所有居民的门窗均由李师傅和张师傅两人进行维修,李师傅每天早上在7:00到8:00之间的任意时刻来到小区,张师傅每天早上在7:30到8:30分之间的任意时刻来到小区,求连续3天内,李师傅比张师傅早到小区的天数的数学期望.

附:临界值表

参考公式: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】

如图,长方体ABCDA1B1C1D1的底面ABCD是正方形,点E在棱AA1上,BEEC1.

1)证明:BE⊥平面EB1C1

2)若AE=A1E,求二面角BECC1的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆()的焦距为2,椭圆的左右焦点分别为,过右焦点轴的垂线交椭圆于两点,.

1)求椭圆的方程;

2)过右焦点作直线交椭圆于两点,若△的内切圆的面积为,求△的面积;

3)已知为圆上一点(轴右侧),过作圆的切线交椭圆两点,试问△的周长是否为一定值?若是,求出该定值,若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为三维空间中个点组成的有限集,其中任意四点不在一个平面上,将集合中的点染成白色或黑色,使得任意一个与集合至少交于四个点的球面具有这样的性质:这些交点中恰有一半的点为白色的.证明:集合中所有的点均在一个球面上,

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)讨论函数的单调性;

(2)当a=1时,若关于的不等式恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线上的任意一点到两定点距离之和为,直线交曲线两点,为坐标原点.

1)求曲线的方程;

2)若不过点且不平行于坐标轴,记线段的中点为,求证:直线的斜率与的斜率的乘积为定值;

3)若直线过点,求面积的最大值,以及取最大值时直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2018年9月,台风“山竹”在我国多个省市登陆,造成直接经济损失达52亿元.某青年志愿者组织调查了某地区的50个农户在该次台风中造成的直接经济损失,将收集的数据分成五组:(单位:元),得到如图所示的频率分布直方图.

(1)试根据频率分布直方图估计该地区每个农户的平均损失(同一组中的数据用该组区间的中点值代表);

(2)台风后该青年志愿者与当地政府向社会发出倡议,为该地区的农户捐款帮扶,现从这50户并且损失超过4000元的农户中随机抽取2户进行重点帮扶,设抽出损失超过8000元的农户数为,求的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 .

(1)求函数的单调区间;

(2)若函数处取得极值,对任意恒成立,求实数的最大值.

查看答案和解析>>

同步练习册答案