分析 (1)通过求导,得出切点坐标,找到函数y=f(x)有两个零点的等价条件,从而求出a的取值范围;
(2)原不等式x1•x2>e2进一步整理得到ln$\frac{{x}_{1}}{{x}_{2}}$>$\frac{2({x}_{1}-{x}_{2})}{{{x}_{1}+x}_{2}}$,只要能证出上述不等式恒成立,
解答 解:(1)令f(x)=0,
∴lnx=$\frac{1}{a}$x,
画出函数g(x)=lnx,h(x)=$\frac{1}{a}$x的图象,如图示:
,
∵g′(x)=$\frac{1}{x}$=$\frac{1}{a}$,
∴切点坐标是(a,lna),
把(a,lna)代入h(x)=$\frac{1}{a}$x,得:a=e,
∴若y=f(x)有两个零点x1,x2,
即g(x),h(x)有2个交点,只需a>e即可;
∴a的范围是(e,+∞):
(2)∵lnx1-ax1=0,lnx2-ax2=0,
∴lnx1-lnx2=a(x1-x2),lnx1+lnx2=a(x1+x2)
原不等式x1•x2>e2等价于lnx1+lnx2>2?a(x1+x2)>2,
?$\frac{ln{x}_{1}-ln{x}_{2}}{{{x}_{1}-x}_{2}}$>$\frac{2}{{{x}_{1}+x}_{2}}$?ln$\frac{{x}_{1}}{{x}_{2}}$>$\frac{2({x}_{1}-{x}_{2})}{{{x}_{1}+x}_{2}}$,
令 $\frac{{x}_{1}}{{x}_{2}}$=t,则0<t<1,
∴ln$\frac{{x}_{1}}{{x}_{2}}$>$\frac{2({x}_{1}-{x}_{2})}{{{x}_{1}+x}_{2}}$?lnt>$\frac{2(t-1)}{t+1}$,
设g(t)=lnt-$\frac{2(t-1)}{t+1}$,(0<t<1),
∴g′(t)=$\frac{(t-1)^{2}}{t(t+1)^{2}}$>0,
∴函数g(t)在(1,+∞)是递增,
∴g(t)>g(1)=0即不等式lnt>$\frac{2(t-1)}{t+1}$成立,
故所证不等式x1•x2>e2成立.
点评 本题主要考查了导数在函数单调性和函数极值中的应用,连续函数的零点存在性定理及其应用,分类讨论的思想方法,属中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 3-$\frac{n+3}{{2}^{n}}$ | B. | 3-$\frac{n+2}{{2}^{n}}$ | C. | 3+$\frac{n-1}{{2}^{n}}$ | D. | $\frac{3}{2}$-$\frac{n+1}{{2}^{n+1}}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com