精英家教网 > 高中数学 > 题目详情
20.若函数f(x)=2sin(ωx+$\frac{π}{3}$),且f(α)=-2f,(β)=0,|α-β|的最小值为$\frac{3π}{4}$,求:
(1)正数ω的值;
(2)函数f(x)的最大值及取得最大值时x的集合;
(3)函数f(x)的递减区间.

分析 (1)由题意根据正弦函数的零点、正弦函数的周期性,求得ω的值.
(2)根据f(x)=2sin($\frac{2}{3}$x+$\frac{π}{3}$),利用正弦函数的最大值求得函数f(x)的最大值及取得最大值时x的集合.
(3)由条件利用正弦函数的单调性,求得函数f(x)的减区间.

解答 解:(1)函数f(x)=2sin(ωx+$\frac{π}{3}$),且f(α)=-2,f(β)=0,|α-β|的最小值为$\frac{3π}{4}$,可得函数的最小正周期T=$\frac{2π}{ω}$=4|α-β|min=3π,求得ω=$\frac{2}{3}$.
(2)由以上可得f(x)=2sin($\frac{2}{3}$x+$\frac{π}{3}$),故当 $\frac{2}{3}$x+$\frac{π}{3}$=2kπ+$\frac{π}{2}$,即x∈{x|x=$\frac{π}{4}$+3kπ,k∈Z}时,
函数f(x)取得最大值为2,取最大值时x的集合为{x|x=$\frac{π}{4}$+3kπ,k∈Z}.
(3)令2kπ+$\frac{π}{2}$≤$\frac{2}{3}$x+$\frac{π}{3}$≤2kπ+$\frac{3π}{2}$,求得 3kπ+$\frac{π}{4}$≤x≤3kπ+$\frac{7π}{4}$,
故函数f(x)的减区间为[3kπ+$\frac{π}{4}$,3kπ+$\frac{7π}{4}$],k∈Z.

点评 本题主要考查正弦函数的零点、正弦函数的周期性,正弦函数的最大值,正弦函数的单调性,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.如图1,一条宽为1km的两平行河岸有村庄A和发电站C,村庄B与A、C的直线距离都是2km,BC与河岸垂直,垂足为D.现要铺设电缆,从发电站C向村庄A,B供电,已知铺设地下电缆、水下电缆缆、水下电缆的费用分别为2万元/km、4万元/km.
(Ⅰ)如果村庄A与B之间原来铺设有旧电缆(图1中线段AB所示),只需对其进行改造即可使用,已知旧电缆的改造费用是0.5万元/km,现决定将线段AB上找得一点F建一配电站,分别向村庄A,B供电,使得在完整利用A,B之间旧电缆进行改造的前提下,并要求新铺设的水下电缆长度最短,试求该方案总施工费用的最小值,并确定点F的位置.
(Ⅱ)如图2,点E在线段AD上,且铺设电缆的线路为CE、EA、EB,若∠DCE=θ(0≤θ≤$\frac{π}{3}$),试用θ表示出总施工费用y(万元)的解析式,并求y的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.当|$\overrightarrow{a}$|=|$\overrightarrow{b}$|≠0,且$\overrightarrow{a}$,$\overrightarrow{b}$不共线时,$\overrightarrow{a}$+$\overrightarrow{b}$与$\overrightarrow{a}$-$\overrightarrow{b}$的关系是(  )
A.垂直B.不垂直C.共线D.无法确定

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.若定点A(a,2)在圆x2+y2-2ax-3y+a2+a=0的外部,则a的取值范围是$(2,\frac{9}{4})$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=sin(2x+φ)的图象的一个对称中心为($\frac{π}{3}$,0),若|φ|<$\frac{π}{2}$,求φ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.设f″(x)>0,则(  )
A.f(1)-f(0)>f′(1)>f′(0)B.f′(1)>f(0)-f(1)>f′(0)C.f′(1)>f(1)-f(0)>f′(0)D.f′(1)>f′(0)>f(1)-f(0)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.空间四点A,B,C,D满足|$\overrightarrow{AB}$|=2,|$\overrightarrow{BC}$|=3,|$\overrightarrow{CD}$|=3$\sqrt{6}$,|$\overrightarrow{DA}$|=7,则$\overrightarrow{AC}$•$\overrightarrow{BD}$的值为0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.如果函数f(x)=3sin(2x-φ)(0<φ<π)的图象满足f(x+$\frac{π}{6}$)=f($\frac{π}{6}$-x),则f(x)$≥\frac{3}{2}$的解集为{x|kπ+$\frac{π}{2}$≤x≤kπ+$\frac{5π}{6}$,k∈Z}.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.设向量$\overrightarrow{a}$=(5,n),且|$\overrightarrow{a}$|=13,则n=±12.

查看答案和解析>>

同步练习册答案