精英家教网 > 高中数学 > 题目详情
16.直线l过抛物线y2=2px(p>0)的焦点,且交抛物线于A,B两点,交其准线于C点,已知|AF|=3,$\overrightarrow{CB}$=3$\overrightarrow{BF}$,则p=2.

分析 分别过A、B作准线的垂线,利用抛物线定义将A、B到焦点的距离转化为到准线的距离,结合已知比例关系,即可得p值,进而可得方程.

解答 解:设A,B在准线上的射影分别为M,N,则
由于|BC|=3|BN|,则直线l的斜率为2$\sqrt{2}$,
∵|AF|=3,
∴AM=3,
故|AC|=3|AM|=9,从而|BF|=1.5,|CB|=4.5.CF=6,CA=9
故$\frac{p}{3}=\frac{6}{9}$,即p=4,
故答案为:2.

点评 本题考查抛物线的定义及其应用,抛物线的几何性质,过焦点的弦的弦长关系,转化化归的思想方法,属中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.给出下列命题:
(1)函数$f(x)=\root{3}{{{x^4}-{x^3}}}$和$g(x)=x•\root{3}{x-1}$是同一个函数;
(2)若函数$f(x)={log_{\frac{1}{2}}}({x^2}-4x+3)$,则函数f(x)的单调递减区间是[2,+∞);
(3)对于函数f(x),x∈R,“y=|f(x)|的图象关于y轴对称”“是y=f(x)是奇函数”的必要不充分条件;
(4)已知函数f(x)=a|log2x|+1(a≠0),定义函数$F(x)=\left\{{\begin{array}{l}{f(x),x>0}\\{f(-x),x<0}\end{array}}\right.$,则函数F(x)是偶函数且当a>0时,函数y=F(x)-2有四个零点.
其中正确命题的个数有(  )个.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.用单调性定义证明函数f(x)=$\frac{1}{x-1}$在区间(1,+∞)上是减函数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.某市政府欲在如图所示的直角梯形ABCD的非农业用地中规划出一个休闲娱乐公园(如图中阴影部分),性状为直角梯形DEFG(线段ED和FG为两条底边),已知BC=2AB=2AD=4km,其中曲线AC是以A为顶点,AD为对称轴的抛物线的一部分.
(Ⅰ)求曲线AC与CD、AD所围成区域的面积.
(Ⅱ)求该公园的最大面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知底面边长为1,侧棱长为$\sqrt{2}$的正四棱柱的各顶点均在同一个球面上,则该球的表面积为(  )
A.$\frac{32π}{3}$B.$\frac{4π}{3}$C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.下列说法正确的是(  )
A.log0.32.1<3-0.3<2-0.3<log0.40.3
B.log0.32.1<2-0.3<3-0.3<log0.40.3
C.log0.40.3<log0.32.1<3-0.3<2-0.3
D.log0.32.1<2-0.3<log0.40.3<3-0.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.一个几何体的侧面都是等边三角形,则这个几何体可能是正四面体(答案不唯一)..

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.不等式:2x+$\frac{1}{x}$≥-3的解集是{x|x>0或-1≤x≤$-\frac{1}{2}$}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知椭圆两焦点为F1,F2,a=$\frac{3}{2}$,过F1作直线交椭圆于A,B两点,求△ABF2的周长.

查看答案和解析>>

同步练习册答案