已知函数
(1)讨论函数的单调性;
(2)若函数的图象在点处的切线的倾斜角为,对于任意的
,函数在区间 上总不是单调函数,
求实数的取值范围;
(3)求证
科目:高中数学 来源: 题型:解答题
已知函数.
(Ⅰ)求函数的极大值.
(Ⅱ)求证:存在,使;
(Ⅲ)对于函数与定义域内的任意实数x,若存在常数k,b,使得和都成立,则称直线为函数与的分界线.试探究函数与是否存在“分界线”?若存在,请给予证明,并求出k,b的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知
(1)求的最小值
(2)由(1)推出的最小值C
(不必写出推理过程,只要求写出结果)
(3)在(2)的条件下,已知函数若对于任意的,恒有成立,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
设函数f(x)=x3-3ax2+3bx的图像与直线12x+y-1=0相切于点(1,-11)。
(1)求a,b的值;
(2)讨论函数f(x)的单调性。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
设函数.
(1)若函数图像上的点到直线距离的最小值为,求的值;
(2)关于的不等式的解集中的整数恰有3个,求实数的取值范围;
(3)对于函数定义域上的任意实数,若存在常数,使得和都成立,则称直线为函数的
“分界线”.设,试探究是否存在“分界线”?若存在,求出“分界线”的方程,若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
设函数(1)当时,求的最大值;(2)令,(),其图象上任意一点处切线的斜率≤恒成立,求实数的取值范围;(3)当,,方程有唯一实数解,求正数的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com