精英家教网 > 高中数学 > 题目详情

已知函数
(1)讨论函数的单调性;
(2)若函数的图象在点处的切线的倾斜角为,对于任意的
 ,函数在区间 上总不是单调函数,
求实数的取值范围;
(3)求证 

(1)a>0,
当a=0无单调区间,当a<0,
(2)
(3)构造函数借助于不等式来得到证明。

解析试题分析:.解:1)根据题意,由于,在可知导数为,因为定义域为x>0,那么对于参数a讨论可知:

时,
时,
时,
2)





 

,可证

3)令

因为。。。。①
。。。。。②
又①式中“=”仅在n=1时成立,又,所以②“=”不成立
证毕。
考点:导数的运用
点评:主要是考查了导数在研究函数中的运用,以及导数单调性和不等式的综合运用,属于中档题。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数.
(Ⅰ)求函数的极大值.
(Ⅱ)求证:存在,使
(Ⅲ)对于函数定义域内的任意实数x,若存在常数k,b,使得都成立,则称直线为函数的分界线.试探究函数是否存在“分界线”?若存在,请给予证明,并求出k,b的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知 
(1)求的最小值
(2)由(1)推出的最小值C
(不必写出推理过程,只要求写出结果)
(3)在(2)的条件下,已知函数若对于任意的,恒有成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.若,求的值;当时,求的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知,
(1)讨论的单调区间;
(2)若对任意的,且,有,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数f(x)=x3-3ax2+3bx的图像与直线12x+y-1=0相切于点(1,-11)。
(1)求a,b的值;
(2)讨论函数f(x)的单调性。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(Ⅰ)当时,求曲线在点处的切线方程;
(Ⅱ)求函数的极值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数.
(1)若函数图像上的点到直线距离的最小值为,求的值;
(2)关于的不等式的解集中的整数恰有3个,求实数的取值范围;
(3)对于函数定义域上的任意实数,若存在常数,使得都成立,则称直线为函数
“分界线”.设,试探究是否存在“分界线”?若存在,求出“分界线”的方程,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数(1)当时,求的最大值;(2)令,(),其图象上任意一点处切线的斜率恒成立,求实数的取值范围;(3)当,方程有唯一实数解,求正数的值.

查看答案和解析>>

同步练习册答案