精英家教网 > 高中数学 > 题目详情
6.已知直线l1:4x+y+3=0,l2:3x-5y-5=0,直线l与l1、l2交于A、B两点,且AB中点为P(-1,2),求直线l的方程.

分析 直线l与l1、l2交于A、B两点,可设A(x1,-4x1-3),B$({x}_{2},\frac{3{x}_{2}-5}{5})$,由于AB中点为P(-1,2),根据中点坐标公式即可得出.

解答 解:∵直线l与l1、l2交于A、B两点,
∴可设A(x1,-4x1-3),B$({x}_{2},\frac{3{x}_{2}-5}{5})$,
∵AB中点为P(-1,2),
∴$\left\{\begin{array}{l}{-1=\frac{{x}_{1}+{x}_{2}}{2}}\\{2=\frac{-4{x}_{1}-3+\frac{3{x}_{2}-5}{5}}{2}}\end{array}\right.$,解得$\left\{\begin{array}{l}{{x}_{1}=-2}\\{{x}_{2}=0}\end{array}\right.$.
∴B(0,-1).
∴直线l的方程为y=$\frac{2+1}{-1-0}$x-1,化为2x+y+1=0.

点评 本题考查了相交直线、中点坐标公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.画出求S=1+(1+2)+(1+2+3)+…的前10项和的算法框图.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.下列各组中的两个集合相等的是(  )
①P={x|x=2n,n∈Z},Q={x|x=2(n-1),n∈Z},②P={x|x=2n-1,n∈N+},Q={x|x=2n+1,x∈N+},③P={x|x2-x=0},Q={x|x=$\frac{1+(-1)^{n}}{2}$,n∈Z}.
A.①②③B.①③C.②③D.①②

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知函数f(x)=ksinx+kcosx+sinxcosx-1,若f(x)≤0恒成立,则实数k的取值范围是(  )
A.[-$\frac{3\sqrt{2}}{4}$,$\frac{3\sqrt{2}}{4}$]B.[-$\frac{\sqrt{6}}{4}$,$\frac{\sqrt{6}}{4}$]C.[-$\sqrt{2}$,$\sqrt{2}$]D.[-$\frac{\sqrt{2}}{4}$,$\frac{\sqrt{2}}{4}$]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知数列{an}的前n项和为Sn=(-1)n+1n,求通项公式an

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知在数列{an}中,a1=1,an+1-an =$\frac{1}{(2n)^{2}-1}$,求数列{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.设f(x)是定义在R上的偶函数,当x≤0时,f(x)=2x2-x,则f(x)=$\left\{\begin{array}{l}{2{x}^{2}-x,x≤0}\\{2{x}^{2}+x,x>0}\end{array}\right.$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知数列{an}的前n项和为Sn,a1=1,Sn+1=4an+2(n∈N*),
(1)若bn=an+1-2an,求证:{bn}是等比数列,并求{bn}的通项公式;
(2)若cn=$\frac{{a}_{n}}{3n-1}$,证明{cn}是等比数列,并求{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知2f(x)-f(-x)=lg(x+1),求f(x).

查看答案和解析>>

同步练习册答案