£¨1£©ÒÑÖªº¯Êýf£¨x£©=ax-x£¨a£¾1£©£®
¢ÙÈôf£¨3£©£¼0£¬ÊÔÇóaµÄÈ¡Öµ·¶Î§£»
¢Úд³öÒ»×éÊýa£¬x0£¨x0¡Ù3£¬±£Áô4λÓÐЧÊý×Ö£©£¬Ê¹µÃf£¨x0£©£¼0³ÉÁ¢£»
£¨2£©ÈôÇúÏßy=x+Êýѧ¹«Ê½£¨p¡Ù0£©ÉÏ´æÔÚÁ½¸ö²»Í¬µã¹ØÓÚÖ±Ïßy=x¶Ô³Æ£¬ÇóʵÊýpµÄÈ¡Öµ·¶Î§£»
£¨3£©µ±0£¼a£¼1ʱ£¬¾Íº¯Êýy=axÓëy=logaxµÄͼÏóµÄ½»µãÇé¿öÌá³öÄãµÄÎÊÌ⣬²¢¼ÓÒÔ½â¾ö£®£¨ËµÃ÷£º¢Ùº¯Êýf£¨x£©=xlnxÓÐÈçÏÂÐÔÖÊ£ºÔÚÇø¼äÊýѧ¹«Ê½Éϵ¥µ÷µÝ¼õ£¬ÔÚÇø¼äÊýѧ¹«Ê½Éϵ¥µ÷µÝÔö£®½âÌâ¹ý³ÌÖпÉÒÔÀûÓ㻢ڽ«¸ù¾ÝÌá³öºÍ½â¾öÎÊÌâµÄ²»Í¬²ã´ÎÇø±ð¸ø·Ö£®£©

½â£º£¨1£©¢Ù
¢Úµ±a=1.1£¬x0=2ʱ£¬f£¨x0£©£¼0³ÉÁ¢
£¨2£©ÉèÇúÏßÉÏÁ½¸ö¶Ô³ÆµãΪ£¨m£¬n£©£¬£¨n£¬m£©£¬
ÓÚÊÇ

ËùÒÔp£¼0£»
£¨3£©Ìá³öµÄÎÊÌâÊÇ£ºµ±a¡Ê£¨0£¬e-e£©Ê±£¬º¯Êýy=axÓëy=logaxµÄͼÏóÓÐ3¸ö½»µã£»µ±a¡Ê[e-e£¬1£©Ê±£¬º¯Êýy=axÓëy=logaxµÄͼÏóÓÐ1¸ö½»µã£®
ÎÊÌâ½â¾öÈçÏ£ºÏÔÈ»£¬µ±0£¼a£¼1ʱ£¬º¯Êýy=axÓëy=logaxµÄͼÏóÔÚÖ±Ïßy=xÉÏÓÐÒ»¸ö½»µã£®
ÈôÇúÏßy=axÉÏÓÐÁ½¸öµã£¨m£¬n£©£¬£¨n£¬m£©¹ØÓÚÖ±Ïßy=x¶Ô³Æ£¬Ôò???mnlna=nlnn=mlnm£¬
¼´m£¬nÊǺ¯Êýy=xlnx£¨0£¼x£¼1£©ÓëÖ±Ïßy=c£¨cΪ³£Êý£©µÄ½»µãµÄºá×ø±ê£®
ÒòΪº¯Êýf£¨x£©=xlnxÓÐÈçÏÂÐÔÖÊ£ºÔÚÇø¼äÉϵ¥µ÷µÝ¼õ£¬ÔÚÇø¼äÉϵ¥µ÷µÝÔö£®
ÓÚÊÇʱf£¨x£©=xlnxÈ¡µÃ×îСֵ£¬¼´£¬ÓÉÆäͼÏó¿ÉµÃµ½£¬µ±Ê±£¬m£¬n³É¶Ô³öÏÖ£¬ÇÒ£®¡­
µ±lna£¼-e£¬¼´a¡Ê£¨0£¬e-e£©Ê±£¬µã£¨m£¬n£©£¬£¨n£¬m£©´æÔÚ£¬¼´º¯Êýy=axÓëy=logaxµÄͼÏóÓÐ3¸ö½»µã£»
µ±lna¡Ý-e£¬¼´a¡Ê[e-e£¬1£©Ê±£¬µã£¨m£¬n£©£¬£¨n£¬m£©²»´æÔÚ£¬º¯Êýy=axÓëy=logaxµÄͼÏóÖ»ÓÐ1¸ö½»µã£®
·ÖÎö£º£¨1£©¢Ù¸ù¾Ýf£¨3£©£¼0£¬a£¾1¹¹Ôì²»µÈʽ×飬½â²»µÈʽ×飬¿ÉµÃaµÄÈ¡Öµ·¶Î§£»
¢ÚÓÉ¢ÙÖнáÂÛ£¬¿ÉµÃaÈ¡£¨1£¬1.445£©ÖеÄÈÎÒâÖµ¶¼¿ÉÒÔ£¬½ø¶ø¸ø³öºÏÊʵÄx0£¬¼´¿ÉµÃµ½´ð°¸£®
£¨2£©ÉèÇúÏßÉÏÁ½¸ö¶Ô³ÆµãΪ£¨m£¬n£©£¬£¨n£¬m£©£¬¿ÉµÃp=-2m2£¬½ø¶øµÃµ½ÊµÊýpµÄÈ¡Öµ·¶Î§£»
£¨3£©Ìá³öµÄÎÊÌâÊÇ£ºµ±a¡Ê£¨0£¬e-e£©Ê±£¬º¯Êýy=axÓëy=logaxµÄͼÏóÓÐ3¸ö½»µã£»µ±a¡Ê[e-e£¬1£©Ê±£¬º¯Êýy=axÓëy=logaxµÄͼÏóÓÐ1¸ö½»µã£¬½ø¶ø¸ù¾Ý£¨1£©£¨2£©µÄ½áÂۿɽøÐÐÍƵ¼ÂÛÖ¤£®
µãÆÀ£º±¾Ì⿼²éµÄ֪ʶµãÊÇÖ¸Êýº¯ÊýµÄͼÏóºÍÐÔÖÊ£¬¶ÔÊýº¯ÊýµÄͼÏóºÍÐÔÖÊ£¬·´º¯Êý£¬¾ßÓÐÏ൱µÄÖ÷¹ÛÐÔ£¬ÄѶÈÒ²±È½Ï´ó£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨1£©ÒÑÖªº¯Êýf£¨x£©=-x2+4£¨x¡Ê£¨-1£¬2£©£©£¬P¡¢QÊÇf£¨x£©Í¼ÏóÉϵÄÈÎÒâÁ½µã£®
¢ÙÊÔÇóÖ±ÏßPQµÄбÂÊkPQµÄÈ¡Öµ·¶Î§£»
¢ÚÇóf£¨x£©Í¼ÏóÉÏÈÎÒ»µãÇÐÏßµÄбÂÊkµÄ·¶Î§£»
£¨2£©ÓÉ£¨1£©ÄãÄܵóöʲô½áÂÛ£¿£¨Ö»Ðëд³ö½áÂÛ£¬²»±ØÖ¤Ã÷£©£¬ÊÔÔËÓÃÕâ¸ö½áÂÛ½â´ðÏÂÃæµÄÎÊÌ⣺ÒÑÖª¼¯ºÏMDÊÇÂú×ãÏÂÁÐÐÔÖʺ¯Êýf£¨x£©µÄÈ«Ì壺Èôº¯Êýf£¨x£©µÄ¶¨ÒåÓòΪD£¬¶ÔÈÎÒâµÄx1£¬x2¡ÊD£¬£¨x1¡Ùx2£©ÓÐ|f£¨x1£©-f£¨x2£©|£¼|x1-x2|£®
¢Ùµ±D=£¨0£¬1£©Ê±£¬f£¨x£©=lnxÊÇ·ñÊôÓÚMD£¬ÈôÊôÓÚMD£¬¸øÓèÖ¤Ã÷£¬·ñÔò˵Ã÷ÀíÓÉ£»
¢Úµ±D=(0£¬
3
3
)
£¬º¯Êýf£¨x£©=x3+ax+bʱ£¬Èôf£¨x£©¡ÊMD£¬ÇóʵÊýaµÄÈ¡Öµ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨1£©ÒÑÖªº¯Êýf£¨x£©=lg£¨1+x£©+lg£¨1-x£©£®¢ÙÇóº¯Êýf£¨x£©µÄ¶¨ÒåÓò£®¢ÚÅжϺ¯ÊýµÄÆæżÐÔ£¬²¢¸øÓèÖ¤Ã÷£®
£¨2£©ÒÑÖªº¯Êýf£¨x£©=ax+3£¬£¨a£¾0ÇÒa¡Ù1£©£¬Çóº¯Êýf£¨x£©ÔÚ[0£¬2]ÉϵÄÖµÓò£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨1£©ÒÑÖªº¯Êýf£¨x£©=
x+3(x¡Ü0)
2x(x£¾0)
£¬Ôòf£¨f£¨-2£©£©Îª
2
2
£»
£¨2£©²»µÈʽf£¨x£©£¾2µÄ½â¼¯ÊÇ
£¨-1£¬0]¡È£¨1£¬+¡Þ£©
£¨-1£¬0]¡È£¨1£¬+¡Þ£©
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2006•ÆÖ¶«ÐÂÇøÄ£Ä⣩£¨1£©ÒÑÖªº¯Êýf£¨x£©=ax-x£¨a£¾1£©£®
¢ÙÈôf£¨3£©£¼0£¬ÊÔÇóaµÄÈ¡Öµ·¶Î§£»
¢Úд³öÒ»×éÊýa£¬x0£¨x0¡Ù3£¬±£Áô4λÓÐЧÊý×Ö£©£¬Ê¹µÃf£¨x0£©£¼0³ÉÁ¢£»
£¨2£©ÈôÇúÏßy=x+
p
x
£¨p¡Ù0£©ÉÏ´æÔÚÁ½¸ö²»Í¬µã¹ØÓÚÖ±Ïßy=x¶Ô³Æ£¬ÇóʵÊýpµÄÈ¡Öµ·¶Î§£»
£¨3£©µ±0£¼a£¼1ʱ£¬¾Íº¯Êýy=axÓëy=logaxµÄͼÏóµÄ½»µãÇé¿öÌá³öÄãµÄÎÊÌ⣬²¢¼ÓÒÔ½â¾ö£®£¨ËµÃ÷£º¢Ùº¯Êýf£¨x£©=xlnxÓÐÈçÏÂÐÔÖÊ£ºÔÚÇø¼ä(0£¬
1
e
]
Éϵ¥µ÷µÝ¼õ£¬ÔÚÇø¼ä[
1
e
£¬1)
Éϵ¥µ÷µÝÔö£®½âÌâ¹ý³ÌÖпÉÒÔÀûÓ㻢ڽ«¸ù¾ÝÌá³öºÍ½â¾öÎÊÌâµÄ²»Í¬²ã´ÎÇø±ð¸ø·Ö£®£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¸ø³öÏÂÁÐËĸöÃüÌ⣺
£¨1£©ÒÑÖªº¯Êýf£¨x£©=
1
2
x2   x¡Ü2
log2(x+a)  x£¾2
ÔÚ¶¨ÒåÓòÄÚÊÇÁ¬Ðøº¯Êý£¬ÊýÁÐ{an}ͨÏʽΪan=
1
an
£¬ÔòÊýÁÐ{an}µÄËùÓÐÏîÖ®ºÍΪ1£®
£¨2£©¹ýµãP£¨3£¬3£©ÓëÇúÏߣ¨x-2£©2-
(y-1)2
4
=1ÓÐΨһ¹«¹²µãµÄÖ±ÏßÓÐÇÒÖ»ÓÐÁ½Ìõ£®
£¨3£©ÏòÁ¿
a
=(x2£¬x+1)
£¬
b
=(1-x£¬t)
£¬Èôº¯Êýf£¨x£©=
a
b
ÔÚÇø¼ä[-1£¬1]ÉÏÊÇÔöº¯Êý£¬ÔòʵÊýtµÄÈ¡Öµ·¶Î§ÊÇ£¨5£¬+¡Þ£©£»
£¨4£©ÎÒÃǶ¨Òå·Ç¿Õ¼¯ºÏAµÄÕæ×Ó¼¯µÄÕæ×Ó¼¯ÎªAµÄ¡°ËO¡±£¬Ôò¼¯ºÏ{2£¬4£¬6£¬8£¬10}µÄ¡°ËO¡±ÓÐ26¸ö£®
ÆäÖÐÕýÈ·µÄÃüÌâÓÐ
£¨1£©£¨2£©£¨4£©
£¨1£©£¨2£©£¨4£©
£¨ÌîÐòºÅ£©

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸