精英家教网 > 高中数学 > 题目详情
已知在平面直角坐标系xoy中,圆C经过函数f(x)=
13
x3+x2-3x-9(x∈R)的图象与两坐标轴的交点,C为圆心.
(1)求圆C的方程;
(2)在直线l:2x+y+19=0上有一个动点P,过点P作圆C的两条切线,设切点分别为M,N,
求四边形PMCN面积的最小值及取得最小值时点P的坐标.
分析:(1)解三次方程,得x1=-3,x2=3.令x=0得f(0)=-9.由此得到函数图象三个交点分别是(3,0),(-3,0),(0,-9),再由圆方程的一般式解方程组,即可得到圆C的方程;
(2)根据圆的对称性和三角形面积公式,可得SPMCN=5PM,因此要求面积最小值即求PM的最小值.由点到直线的距离公式和勾股定理加以计算即可得到当P(-6,-7)时,四边形PMCN面积的最小值是10
5
解答:解:(1)由(x)=
1
3
x3+x2-3x-9=0,得
1
3
(x+3)2(x-3)=0
解之得x1=-3,x2=3.
再由x=0,得f(0)=-9
∴函数图象与两坐标轴有三个交点分别是(3,0),(-3,0),(0,-9)---(3分)
设经过该三点圆的方程为x2+y2+Dx+Ey+F=0,
将三点坐标代入,解得:D=0,E=8,F=-9,
所以圆的方程是:x2+y2+8y-9=0,--------(8分)
(2)由题意,得:SPMCN=5PM,因此要求面积最小值即求PM的最小值,
而PM=
PC2-r2

∵PC最小值为点C到直线l的距离,即PCmin=
|-4+19|
5
=3
5
,-------10
∴PMmin=
45-25
=2
5
,所以四边形PMCN面积的最小值是10
5
.-(12分).
此时PC的方程为x-2y-8=0,与直线l联解可得得P(-6,-7)---(14分).
点评:本题给出经过三点的圆,求圆的方程并求四边形面积的最小值,着重考查了点到直线的距离公式、圆的方程和面积最值的求法等知识,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

选修4-4:坐标系与参数方程
已知在平面直角坐标系xOy内,点P(x,y)在曲线C:
x=1+cosθ
y=sinθ
为参数,θ∈R)上运动.以Ox为极轴建立极坐标系,直线l的极坐标方程为ρcos(θ+
π
4
)=0

(Ⅰ)写出曲线C的标准方程和直线l的直角坐标方程;
(Ⅱ)若直线l与曲线C相交于A、B两点,点M在曲线C上移动,试求△ABM面积的最大值,并求此时M点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知在平面直角坐标系中的一个椭圆,它的中心在原点,左焦点为F(-
3
,0)
,且过点D(2,0).
(1)求该椭圆的标准方程;
(2)设点A(1,
1
2
)
,若P是椭圆上的动点,求线段PA的中点M的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

(坐标系与参数方程选做题)已知在平面直角坐标系xoy中,圆C的参数方程为
x=
3
+3cosθ
y=1+3sinθ
,(θ为参数),以ox为极轴建立极坐标系,直线l的极坐标方程为ρcos(θ+
π
6
)
=0,则圆C截直线l所得的弦长为
4
2
4
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知在平面直角坐标系中,O(0,0),A(1,-2),B(1,1),C(2,-1),动点M(x,y)满足条件
-2≤
OM
OA
≤2
1≤
OM
OB
≤2
,则z=
OM
OC
的最大值为(  )
A、-1B、0C、3D、4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知在平面直角坐标系xOy中的一个椭圆,它的中心在原点,左焦点为F(-
3
,0)
,右顶点为D(2,0),设点A(1,
1
2
)

(Ⅰ)求该椭圆的标准方程;
(Ⅱ)若P是椭圆上的动点,求线段PA中点M的轨迹方程;
(Ⅲ)是否存在直线l,满足l过原点O并且交椭圆于点B、C,使得△ABC面积为1?如果存在,写出l的方程;如果不存在,请说明理由.

查看答案和解析>>

同步练习册答案