精英家教网 > 高中数学 > 题目详情

【题目】如图,四棱锥S﹣ABCD中,底面ABCD为直角梯形,AB∥CD,BC⊥CD,平面SCD⊥平面ABCD,SC=SD=CD=AD=2AB,M,N分别为SA,SB的中点,E为CD中点,过M,N作平面MNPQ分别与BC,AD交于点P,Q,若 =t
(1)当t= 时,求证:平面SAE⊥平面MNPQ;
(2)是否存在实数t,使得二面角M﹣PQ﹣A的平面角的余弦值为 ?若存在,求出实数t的值;若不存在,说明理由.

【答案】
(1)证明:E为CD中点,∴四边形ABCE为矩形,

∴AE⊥CD,

当t= 时,Q为AD中点,PQ∥CD,所以PQ⊥AE,

∵平面SCD⊥平面ABCD,SE⊥CD,∴SE⊥面ABCD,

∵PQ面ABCD,∴PQ⊥SE,∴PQ⊥面SAE,

所以面MNPQ⊥面SAE


(2)解:如图,以E为原点,ED,EA,ES直线分别为x轴,y轴,z轴建立如图所示坐标系;

设ED=a,则M((1﹣t)a,( )a, a),E(0,0,0),A(0, ,0),

Q((1﹣t)a, ,0), =(0, ),

面ABCD一个方向向量为 =(1,0,0),

设平面MPQ的法向量 =(x,y,z),

,取z=2,得 =(0, ,2),

平面ABCD的法向量为 =(0,0,1)

∵二面角M﹣PQ﹣A的平面角的余弦值为

∴由题意:cosθ= = =

解得t= 或t=

由图形知,当t= 时,二面角M﹣PQ﹣A为钝二面角,不合题意,舍去

综上:t=


【解析】(1)推导出AE⊥CD,PQ⊥AE,从而SE⊥面ABCD,由此能证明面MNPQ⊥面SAE.(2)以E为原点,ED,EA,ES直线分别为x轴,y轴,z轴建立空间直角坐标系,利用向量法能求出t的值.
【考点精析】关于本题考查的平面与平面垂直的判定,需要了解一个平面过另一个平面的垂线,则这两个平面垂直才能得出正确答案.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)的定义域为R,f(﹣2)=2021,对任意x∈(﹣∞,+∞),都有f'(x)<2x成立,则不等式f(x)>x2+2017的解集为(
A.(﹣2,+∞)
B.(﹣2,2)
C.(﹣∞,﹣2)
D.(﹣∞,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知在直角坐标系xOy中,曲线C1 (θ为参数),在以平面直角坐标系的原点O为极点,x轴的正半轴为极轴,取相同单位长度的极坐标系中,曲线C2:ρsin( )=1.
(1)求曲线C1的普通方程和曲线C2的直角坐标方程;
(2)曲线C1上恰好存在三个不同的点到曲线C2的距离相等,分别求这三个点的极坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线E的焦点为F,过点F的直线lE交于AC两点

(1)分别过AC两点作抛物线E的切线,求证:抛物线EAC两点处的切线互相垂直

(2)过点F作直线l的垂线与抛物线E交于BD两点,求四边形ABCD的面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知F1、F2分别是双曲线 =1(a>0,b>0)的左、右焦点,过点F2与双曲线的一条渐近线平行的直线交双曲线另一条渐近线于点M,若点M在以线段F1F2为直径的圆外,则双曲线离心率的取值范围是(
A.(1,
B.( ,+∞)
C.( ,2)
D.(2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.
根据该折线图,下列结论错误的是(
A.月接待游客量逐月增加
B.年接待游客量逐年增加
C.各年的月接待游客量高峰期大致在7,8月
D.各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知一个几何体的三视图如图所示.

1)求此几何体的表面积;

2)如果点在正视图中所示位置:为所在线段中点,为顶点,求在几何体表面上,从点到点的最短路径的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=xex﹣a(x﹣1)(a∈R)
(1)若函数f(x)在x=0处有极值,求a的值及f(x)的单调区间
(2)若存在实数x0∈(0, ),使得f(x0)<0,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy中,直线l的参数方程为 (t为参数),在以坐标原点O为极点,x轴的正半轴为极轴的极坐标系中,曲线C的极坐标方程为ρ=2 cos( +θ).
(I)求直线l的普通方程和曲线C的直角坐标方程;
(Ⅱ)设直线l与曲线C相交于M,N两点,求|MN|的值.

查看答案和解析>>

同步练习册答案