精英家教网 > 高中数学 > 题目详情
已知数列{an+1}满足an+1=2an-1且n,数列{bn}的前n项和为Sn
(1)求数列{an}的通项an; (2)求Sn
(3)设f(x)=(x-2n+1)ln(x-2n+1)-x(n∈N*),求证:f(x)≥
3Sn+26Sn-2
分析:(1)由an+1=2an-1得an+1-1=2(an-1),且a1-1=2由此能求出an
(2)由an=2n+1,知b n=
2n
(2n+1)(2n+1+1)
=
1
2n+1
-
1
2n+1+1
,由此能够求出Sn
(3)由
3Sn+2
6Sn-2
=
1-
3
2n+1+1
+2
2-
6
2n+1+1
-2
=
3(1-
1
2n+1+1
)
-
6
2n+1+1
=
2n+1
-2
=-2n,f′(x)=ln(x-2n+1)
,知当x=2n时,f'(x)=0;x>2n时,f'(x)>0,由此能够证明f(x)≥
3Sn+2
6Sn-2
成立.
解答:解:(1)由an+1=2an-1得an+1-1=2(an-1),且a1-1=2,∴数列{an-1}是以2为首项,2为公比的等比数列,an-1=2•2n-1,∴an=2n+1.
(2)由(1)知an=2n+1,∴b n=
2n
(2n+1)(2n+1+1)
=
1
2n+1
-
1
2n+1+1
Sn=
1
2+1
-
1
22+1
+
1
22+1
-
1
23+1
+
1
23+1
-
1
24+1
++
1
2n+1
-
1
2n+1+1
=
1
3
-
1
2n+1+1

(3)证明:
3Sn+2
6Sn-2
=
1-
3
2n+1+1
+2
2-
6
2n+1+1
-2
=
3(1-
1
2n+1+1
)
-
6
2n+1+1
=
2n+1
-2
=-2n,f′(x)=ln(x-2n+1)

当x=2n时,f'(x)=0;x>2n时f'(x)>0,f(x)在(2n,+∞)上递增;2n-1<x<2n时,f(x)min=-2n=
3Sn+2
6Sn-2
∴f(x)≥
3Sn+2
6Sn-2
成立.
点评:本题考查数列的通项公式的求法、数列前n项和的解法和数列与不等式的综合运用,解题时要注意迭代法、错位相减法和导数的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知数列{an}中,a1=-60,an+1=3an+2,
(1)求数列{an}的通项an
(2)求数列{an}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和为Sn,且Sn=
23
an
+1(n∈N*);
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若数列{n|an|}的前n项和为Tn,求数列{Tn}的通项公式、

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列{an+1}满足an+1=2an-1且n,数列{bn}的前n项和为Sn
(1)求数列{an}的通项an; (2)求Sn
(3)设f(x)=(x-2n+1)ln(x-2n+1)-x(n∈N*),求证:f(x)≥数学公式

查看答案和解析>>

科目:高中数学 来源:2010-2011学年四川省成都外国语学校高三(下)2月月考数学试卷(理科)(解析版) 题型:解答题

已知数列{an+1}满足an+1=2an-1且n,数列{bn}的前n项和为Sn
(1)求数列{an}的通项an; (2)求Sn
(3)设f(x)=(x-2n+1)ln(x-2n+1)-x(n∈N*),求证:f(x)≥

查看答案和解析>>

同步练习册答案