精英家教网 > 高中数学 > 题目详情

【题目】已知圆,直线的方程为,点是直线上一动点,过点作圆的切线,切点为.

(1)当的横坐标为时,求的大小;

(2)求四边形面积的最小值;

(3)求证:经过三点的圆必过定点,并求出所有定点的坐标.

【答案】(1);(2);(3)证明见解析,

【解析】

1)由已知求出点纵坐标,求出,利用,求出,即可得出结论;

2,转化求的最小值,求圆心到直线的最小值,即可求解;

3)设,由,圆就是以为直径的圆,求出其方程,整理为圆系方程,即可求解.

(1)由题可知,圆的半径

因为是圆的一条切线,所以

又因

(2)

要使四边形面积最小,只需最小.

,只需最小.

时,有最小值,

此时四边形面积最小为.

(3)设,因为

所以经过三点的圆为直径,

方程为:

,解得

所以圆过定点.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知双曲线的右顶点到其一条渐近线的距离等于,抛物线的焦点与双曲线的右焦点重合,则抛物线上的动点到直线距离之和的最小值为( )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(Ⅰ)解不等式:

(Ⅱ)已知,若对任意的,不等式恒成立,求正数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知的两个顶点的坐标分别为,圆的内切圆,在边上的切点分别为,动点的轨迹为曲线.

(1)求曲线的方程;

(2)设直线与曲线交于两点,点在曲线上,是坐标原点,若,判断四边形的面积是否为定值?若为定值,求出该定值;如果不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设点分别是椭圆的左、右焦点,为椭圆上任意一点,且的最小值为0.

(1)求椭圆的方程;

(2)如图,动直线与椭圆有且仅有一个公共点,点是直线上的两点,且,求四边形面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】是两条不同的直线,是三个不同的平面,给出下列四个命题:

①若,则

②若,则

③若,则

④若,则

其中正确命题的序号是(

A.①和②B.②和③C.③和④D.①和④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列的各项均为正数,前项和为,首项为2.若对任意的正整数恒成立.

(1)求

(2)求证:是等比数列;

(3)设数列满足,若数列,…,)为等差数列,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,矩形中,的中点,现将折起,使得平面及平面都与平面垂直.

1)求证:平面

2)求二面角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图1,四棱锥中,底面,面是直角梯形,为侧棱上一点.该四棱锥的俯视图和侧(左)视图如图2所示.

1)证明:平面

2)线段上是否存在点,使所成角的余弦值为?若存在,找到所有符合要求的点,并求的长;若不存在,说明理由.

查看答案和解析>>

同步练习册答案