精英家教网 > 高中数学 > 题目详情
已知为坐标原点,为椭圆轴正半轴上的焦点,过且斜率为的直线交与两点,点满足

(Ⅰ)小题1:证明:点上;
(Ⅱ)小题2:设点关于点的对称点为,证明:四点在同一圆上。

小题1:
小题2:
 (Ⅰ)设


为椭圆




(Ⅱ)如图,由椭圆对称性,得
,则





故,四点在同一圆上。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题14分).已知椭圆离心率,焦点到椭圆上
的点的最短距离为
(1)求椭圆的标准方程。
(2)设直线与椭圆交与M,N两点,当时,求直线的方程。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆过点,且离心率为.
(1)求椭圆的方程;
(2)为椭圆的左右顶点,直线轴交于点,点是椭圆上异于的动点,直线分别交直线两点.证明:当点在椭圆上运动时,恒为定值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

.椭圆的左准线为,左、右焦点分别为,抛物线的准线也为,焦点为,记的一个交点为,则(    )
A.B.1C.2D.与的取值有关

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的中心在坐标原点,焦点在轴上,离心率为,椭圆上的点到焦点距离的最大值为
(Ⅰ)求椭圆的标准方程;
(Ⅱ)若过点的直线与椭圆交于不同的两点,且,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题


(本小题满分12分)
已知椭圆的一个焦点为F1(-1,0),对应的准线方程为,且离心率e满足:成等差数列。

(1)求椭圆C方程;
(2)如图,抛物线的一段与椭圆C的一段围成封闭图形,点N(1,0)在x轴上,又A、B两点分别在抛物线及椭圆上,且AB//x轴,求△NAB的周长的取值范围。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知一隧道的截面是一个半椭圆面(如图所示),要保证车辆正常通行,车顶离隧道顶部至少要有米的距离,现有一货车,车宽米,车高米.
(1)若此隧道为单向通行,经测量隧道的跨度是米,则应如何设计隧道才能保证此货车正常通行?
(2)圆可以看作是长轴短轴相等的特殊椭圆,类比圆面积公式,
请你推测椭圆的面积公式.并问,当隧道为双向通行(车道间的距离忽略不记)时,要使此货车安全通过,应如何设计隧道,才会使同等隧道长度下开凿的土方量最小?

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

以原点为顶点,以椭圆C:的左准为准线的抛物线交椭圆C的右准
线交于A、B两点,则|AB|=        

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

椭圆的左右焦点分别为,P为椭圆上一点,且
,则椭圆的离心率e=__________。

查看答案和解析>>

同步练习册答案