精英家教网 > 高中数学 > 题目详情
3.已知函数f(x)=ex(2x-1),g(x)=ax-a(a∈R).
(1)若y=g(x)为曲线y=f(x)的一条切线,求a的值;
(2)已知a<1,若存在唯一的整数x0,使得f(x0)<g(x0),求a的取值范围.

分析 (1)求出导数,设出切点(m,n),求得切线的斜率,由切线的方程,可得a=em(2m+1),又n=am-a=em(2m-1),解方程可得a的值;
(2)函数f(x)=ex(2x-1),g(x)=kx-k,问题转化为存在唯一的整数x0使得f(x0)在直线y=kx-k的下方,求导数可得函数的极值,数形结合可得-k>f(0)=-1且f(-1)=-3e-1≥-k-k,解关于k的不等式组可得.

解答 解:(1)f′(x)=ex(2x-1)+2ex=ex(2x+1),
设切点为(m,n),由题意可得a=em(2m+1),
又n=am-a=em(2m-1),
解方程可得,a=1或4${e}^{\frac{3}{2}}$;
(2)函数f(x)=ex(2x-1),g(x)=ax-a
由题意知存在唯一的整数x0使得f(x0)在直线y=ax-a的下方,
∵f′(x)=ex(2x-1)+2ex=ex(2x+1),
∴当x<-$\frac{1}{2}$时,f′(x)<0,
当x>-$\frac{1}{2}$时,f′(x)>0,
∴当x=-$\frac{1}{2}$时,f(x)取最小值-2${e}^{-\frac{1}{2}}$,
当x=0时,f(0)=-1,当x=1时,f(1)=e>0,
直线y=ax-a恒过定点(1,0)且斜率为a,
故-a>f(0)=-1且f(-1)=-3e-1≥-a-a,
解得$\frac{3}{2e}$≤a<1.

点评 本题考查导数的运用:求切线的斜率和极值、最值,涉及数形结合和转化的思想,属中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.(1)判断并证明函数f(x)=x+$\frac{4}{x}$在区间(2,+∞)上的单调性;
(2)试写出f(x)=x+$\frac{a}{x}$(a>0)在(0,+∞)上的单调区间(不用证明);
(3)根据(2)的结论,求f(x)=x+$\frac{16}{x}$在区间[1,8]上的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知函数f(x)的定义域为D,若存在非零常数t,使得对于任意x∈M(M⊆D),有x+t∈D,且f(x+t)≥f(x),则称f(x)为M上的t阶函数,如果定义域为R的函数f(x)是奇函数,当x≥0时,f(x)=|x-2a2|-2a2,且f(x)为R上的8阶函数,那么实数a的取值范围是(  )
A.[-1,1]B.[-$\frac{\sqrt{2}}{2}$,$\frac{\sqrt{2}}{2}$]C.(-∞,-1]∪[1,+∞)D.(-∞,-$\frac{\sqrt{2}}{2}$]∪[$\frac{\sqrt{2}}{2}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.直线y=1被椭圆$\frac{{x}^{2}}{4}$$+\frac{{y}^{2}}{2}$=1截得的线段长为2$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=ax2-bx+2满足f(1)=1,且对x∈R都有f(x)≥x恒成立.
(Ⅰ)求函数f(x)的解析式;
(Ⅱ)设函数g(t)=4t-$\frac{10}{t}$+k(k∈R),对任意t∈[1,2],存在x∈[-1,2],使得g(t)<f(x),求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.若直线a∥平面α,直线b⊥平面α,则a与b不可能(  )
A.相交B.异面C.平行D.垂直

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知椭圆E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)离心率为$\frac{1}{2}$,F1、F2分别为左、右焦点,过F1垂直与长轴的弦长为3$\sqrt{2}$.
(1)求椭圆的标准方程;
(2)如图,以椭圆长轴AB为直径的圆:x2+y2=a2,P为圆O上与A,B不重合的一点,设PA与椭圆交于D,设直线DF2,PB的斜率分别为k1,k2,若k1=λk2,求实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.若$\frac{{x}^{2}}{4}$+y2=x,则x2+y2的最小值和最大值分别是(  )
A.0,16B.-$\frac{1}{3}$,0C.0,1D.1,2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.不等式$\frac{x+1}{3x-2}$≥1的解集为{x|$\frac{2}{3}<x≤\frac{3}{2}$}.

查看答案和解析>>

同步练习册答案