精英家教网 > 高中数学 > 题目详情

设P是△ABC所在平面内一点,若数学公式数学公式则下列正确的命题序号是________.
①P是△ABC的重心  ②△ABC是锐角三角形 ③△ABC的三边长有可能是三个连续的整数 ④∠C=2∠A.

①③④
分析:首先由,取AC中点O,则,从而P是△ABC的重心,进而利用,可得三角形三边的关系,从而可以判断其它命题的正确性.
解答:对于①,∵,取AC中点O,则,∴P是△ABC的重心
由①知,15sinA=12sinB=10sinC,∴15a=12b=10c,不妨设a=8k,b=10k,c=12k(k>0),故可知②错,③正确
对于④,,∴∠C=2∠A
故答案为:①③④.
点评:本题以向量为载体,考查三角形的性质,关键是利用向量的加法公式,考查正弦定理的运用,有一定的综合性.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设P是△ABC所在平面内的一点,
BC
+
BA
=2
BP
,则(  )
A、
PA
+
PB
=
0
B、
PC
+
PA
=
0
C、
PB
+
PC
=
0
D、
PA
+
PB
+
PC
=
0

查看答案和解析>>

科目:高中数学 来源: 题型:

设P是△ABC所在平面内的一点,
BC
+
BA
=2
BP
,则
PC
+
PA
=
0

查看答案和解析>>

科目:高中数学 来源: 题型:

设P是△ABC所在平面内的一点,
BC
+
BA
=2
BP
,则(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设P是△ABC所在平面内的一点,则“
BC
+
BA
=2
BP
”是“
PA
+
PC
=
0
”的(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设P是△ABC所在平面内的一点,
BC
+
BA
=2
BP
,则(  )
A、
PA
+
PB
=
0
B、
PC
+
PB
=
0
C、
PC
+
PA
=
0
D、
PC
+
PA
+
PB
=
0

查看答案和解析>>

同步练习册答案