精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆的标准方程为,离心率,且椭圆经过点.过右焦点的直线交椭圆 两点.

)求椭圆的方程.

)若,求直线的方程.

)在线段上是否存在点,使得以 为邻边的四边形是菱形,且点在椭圆上.若存在,求出的值,若不存在,请说明理由.

【答案】.(.()存在,点.

【解析】试题分析:(1由题意求出椭圆方程;(2联立方程组得到韦达定理,由弦长公式求得得到直线方程;3由特殊位置直线垂直轴时,易知存在点满足四边形是菱形。

试题解析:

)由题意可得解得

椭圆的方程为

)设直线的方程为 ,则

,消去

化简得

解得

故直线的方程为

(3)存在点满足要求。

当直线垂直轴时,则时,即 在右顶点时,则四边形是菱形,所以存在满足要求的点

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知,其中常数.

(1)当时,求函数的极值;

(2)若函数有两个零点,求证:

(3)求证: .

选做题:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线.

(1)若曲线C在点处的切线为,求实数的值;

(2)对任意实数,曲线总在直线:的上方,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数

)当为自然对数的底数)时,求的极小值;

Ⅱ)若函数存在唯一零点,求的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面,底面为梯形,,且

若点上一点且,证明:平面

二面角的大小;

在线段上是否存在一点,使得?若存在,求出的长;若不存在,说明理由

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】唐三彩,中国古代陶瓷烧制工艺的珍品,它吸取了中国国画、雕塑等工艺美术的特点,在中国文化中占有重要的历史地位,在陶瓷史上留下了浓墨重彩的一笔.唐三彩的生产至今已有1300多年的历史,制作工艺十分复杂,它的制作过程必须先后经过两次烧制,当第一次烧制合格后方可进入第二次烧制,两次烧制过程相互独立。某陶瓷厂准备仿制甲、乙、丙三件不同的唐三彩工艺品,根据该厂全面治污后的技术水平,经过第一次烧制后,甲、乙、丙三件工艺品合格的概率依次为 ,经过第二次烧制后,甲、乙、丙三件工艺品合格的概率依次为 .

(1)求第一次烧制后甲、乙、丙三件中恰有一件工艺品合格的概率;

(2)经过前后两次烧制后,甲、乙、丙三件工艺品成为合格工艺品的件数为,求随机变量的数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知中心在原点,焦点在 轴上的椭圆过点,离心率为 是椭圆的长轴的两个端点(位于右侧),是椭圆在轴正半轴上的顶点.

1求椭圆的标准方程;

2)是否存在经过点且斜率为的直线与椭圆交于不同两点,使得向量共线?如果存在,求出直线方程;如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知矩阵将直线lxy-1=0变换成直线l′.

(1)求直线l′的方程;

(2)判断矩阵A是否可逆?若可逆,求出矩阵A的逆矩阵A-1;若不可逆,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直三棱柱中,底面是等腰直角三角形, ,侧棱,点分别为棱的中点, 的重心为,直线垂直于平面.

1)求证:直线平面

2)求二面角的余弦.

查看答案和解析>>

同步练习册答案