精英家教网 > 高中数学 > 题目详情

抛物线与椭圆的公共弦长为

[  ]

A.1

B.

C.2

D.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知过点A(0,4)的直线l与以F为焦点的抛物线C:x2=py相切于点T(-4,yo);中心在坐标原点,一个焦点为F的椭圆与直线l有公共点.
(1)求直线l的方程和焦点F的坐标;
(2)求当椭圆的离心率最大时椭圆的方程;
(3)设点M(x1,yl)是抛物线C上任意一点,D(0,-2)为定点,是否存在垂直于y轴的直线l′被以MD为直径的圆截得的弦长为定值?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线 x2=4y的焦点是椭圆 C:
x2
a2
+
y2
b2
=1(a>b>0)
一个顶点,椭圆C的离心率为
3
2
.另有一圆O圆心在坐标原点,半径为
a2+b2

(Ⅰ)求椭圆C和圆O的方程;
(Ⅱ)已知过点P(0,
a2+b2
)的直线l与椭圆C在第一象限内只有一个公共点,求直线l被圆O截得的弦长;
(Ⅲ)已知M(x0,y0)是圆O上任意一点,过M点作直线l1,l2,使得l1,l2与椭圆C都只有一个公共点,求证:l1⊥l2

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知抛物线 x2=4y的焦点是椭圆 C:
x2
n2
+
y2
b2
=1(a>b>0)
一个顶点,椭圆C的离心率为
3
2
.另有一圆O圆心在坐标原点,半径为
a2+b2

(I)求椭圆C和圆O的方程;
(Ⅱ)已知过点P(0,
a2+b2
)的直线l与椭圆C在第一象限内只有一个公共点,求直线l被圆O截得的弦长;
(Ⅲ)已知M(x0,y0)是圆O上任意一点,过M点作直线l1,l2,使得l1,l2与椭圆C都只有一个公共点,求证:l1⊥l2

查看答案和解析>>

科目:高中数学 来源:2011-2012学年广东省实验中学高三(下)第一次综合测试数学试卷(理科)(解析版) 题型:解答题

已知过点A(0,4)的直线l与以F为焦点的抛物线C:x2=py相切于点T(-4,yo);中心在坐标原点,一个焦点为F的椭圆与直线l有公共点.
(1)求直线l的方程和焦点F的坐标;
(2)求当椭圆的离心率最大时椭圆的方程;
(3)设点M(x1,yl)是抛物线C上任意一点,D(0,-2)为定点,是否存在垂直于y轴的直线l′被以MD为直径的圆截得的弦长为定值?请说明理由.

查看答案和解析>>

同步练习册答案