【题目】已知△ABC三内角A、B、C所对边的长分别为a,b,c,且3sin2A+3sin2B=4sinAsinB+3sin2C.
(1)求cosC的值;
(2)若a=3,c,求△ABC的面积.
科目:高中数学 来源: 题型:
【题目】已知多面体ABCDEF中,四边形ABFE为正方形,,,G为AB的中点,.
(1)求证:平面CDEF;
(2)求平面ACD与平面BCF所成锐二面角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知长方体中,底面ABCD的长AB=4,宽BC=4,高=3,点M,N分别是BC,的中点,点P在上底面中,点Q在上,若,则PQ长度的最小值是
A. B. C. D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设某大学的女生体重y(单位:kg)与身高x(单位:cm)具有线性相关关系,根据一组样本数据(xi,yi)(i=1,2,…,n),用最小二乘法建立的回归方程为=0.85x-85.71,则下列结论中不正确的是
A. y与x具有正的线性相关关系
B. 回归直线过样本点的中心(,)
C. 若该大学某女生身高增加1cm,则其体重约增加0.85kg
D. 若该大学某女生身高为170cm,则可断定其体重比为58.79kg
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知符号函数sgnxf(x)是定义在R上的减函数,g(x)=f(x)﹣f(ax)(a>1),则( )
A.sgn[g(x)]=sgn xB.sgn[g(x)]=﹣sgnx
C.sgn[g(x)]=sgn[f(x)]D.sgn[g(x)]=﹣sgn[f(x)]
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设f(x)=etx(t>0),过点P(t,0)且平行于y轴的直线与曲线C:y=f(x)的交点为Q,曲线C过点Q的切线交x轴于点R,若S(1,f(1)),则△PRS的面积的最小值是_____.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=x2+ax+b,g(x)=ex(cx+d),若曲线y=f(x)和曲线y=g(x)都过点P(0,2),且在点P处有相同的切线y=4x+2.
(1)求a,b,c,d的值;
(2)若x≥-2时,恒有f(x)≤kg(x),求k的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知,是两个不重合的平面,在下列条件中,可判断平面,平行的是( )
A.,是平面内两条直线,且,
B.,是两条异面直线,,,且,
C.面内不共线的三点到的距离相等
D.面,都垂直于平面
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com