精英家教网 > 高中数学 > 题目详情
(2013•海淀区一模)在极坐标系中,曲线ρ=4cosθ围成的图形面积为(  )
分析:先将原极坐标方程两边同乘以ρ后化成直角坐标方程,再利用直角坐标方程进行求解圆的面积即可.
解答:解:将原极坐标方程为ρ=4cosθ,化成:
ρ2=4ρcosθ,其直角坐标方程为:
∴x2+y2=4x,是一个半径为2的圆,其面积为4π.
故选C.
点评:本题考查点的极坐标和直角坐标的互化,利用直角坐标与极坐标间的关系,即利用ρcosθ=x,ρsinθ=y,ρ2=x2+y2,进行代换即得.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•海淀区一模)已知a>0,下列函数中,在区间(0,a)上一定是减函数的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•海淀区一模)在四棱锥P-ABCD中,PA⊥平面ABCD,△ABC是正三角形,AC与BD的交点M恰好是AC中点,又PA=AB=4,∠CDA=120°,点N在线段PB上,且PN=
2

(Ⅰ)求证:BD⊥PC;
(Ⅱ)求证:MN∥平面PDC;
(Ⅲ)求二面角A-PC-B的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•海淀区一模)在四棱锥P-ABCD中,PA⊥平面ABCD,△ABC是正三角形,AC与BD的交点M恰好是AC中点,又∠CAD=30°,PA=AB=4,点N在线段PB上,且
PN
NB
=
1
3

(Ⅰ)求证:BD⊥PC;
(Ⅱ)求证:MN∥平面PDC;
(Ⅲ)设平面PAB∩平面PCD=l,试问直线l是否与直线CD平行,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•海淀区一模)函数f(x)=
13
x3-kx,其中实数k为常数.
(I) 当k=4时,求函数的单调区间;
(II) 若曲线y=f(x)与直线y=k只有一个交点,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•海淀区一模)已知圆M:(x-
2
2+y2=
7
3
,若椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的右顶点为圆M的圆心,离心率为
2
2

(I)求椭圆C的方程;
(II)已知直线l:y=kx,若直线l与椭圆C分别交于A,B两点,与圆M分别交于G,H两点(其中点G在线段AB上),且|AG|=|BH|,求k的值.

查看答案和解析>>

同步练习册答案