【题目】已知数列{an}的前n项和为Sn , 向量 =(Sn , 1), =(2n﹣1, ),满足条件 ∥ ,
(1)求数列{an}的通项公式,
(2)设函数f(x)=( )x , 数列{bn}满足条件b1=1,f(bn+1)= .
①求数列{bn}的通项公式,
②设cn= ,求数列{cn}的前n项和Tn .
【答案】
(1)解:由向量 =(Sn,1), =(2n﹣1, ), ∥ ,
可得 Sn=2n﹣1,即Sn=2n+1﹣2,
当n>1时,an=Sn﹣Sn﹣1=(2n+1﹣2)﹣(2n﹣2)=2n,
当n=1时,a1=S1=2,满足上式.
则有数列{an}的通项公式为an=2n,n∈N*
(2)解:①f(x)=( )x,b1=1,f(bn+1)= .
可得 = =( ) ,
即有bn+1=bn+1,可得{bn}为首项和公差均为1的等差数列,
即有bn=n;
②Cn= = ,前n项和Tn=1 +2( )2+…+(n﹣1)( )n﹣1+n( )n,
Tn=1( )2+2( )3+…+(n﹣1)( )n+n( )n+1,
相减可得, Tn= +( )2+…+( )n﹣1+( )n﹣n( )n+1
= ﹣n( )n+1,
化简可得,前n项和Tn=2﹣
【解析】(1)运用向量共线的坐标表示,可得Sn=2n+1﹣2,再由当n>1时,an=Sn﹣Sn﹣1 , n=1时,a1=S1 , 即可得到所求通项公式;(2)①运用指数的运算性质和等差数列的定义,即可得到所求通项公式;②求得Cn= = ,运用数列的求和方法:错位相减法,结合等比数列的求和公式,化简整理即可得到所求和.
【考点精析】解答此题的关键在于理解数列的前n项和的相关知识,掌握数列{an}的前n项和sn与通项an的关系,以及对数列的通项公式的理解,了解如果数列an的第n项与n之间的关系可以用一个公式表示,那么这个公式就叫这个数列的通项公式.
科目:高中数学 来源: 题型:
【题目】设是实数,已知奇函数,
(1)求的值;
(2)证明函数在R上是增函数;
(3)若对任意的t∈R,不等式f(t2﹣2t)+f(2t2﹣k)<0有解,求k的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知定义在R上的可导函数f(x)的导函数为f′(x),满足f′(x)<f(x),且f(x+2)为偶函数,f(4)=1,则不等式f(x)<ex的解集为( )
A.(﹣2,+∞)
B.(0,+∞)
C.(1,+∞)
D.(4,+∞)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了保护环境,发展低碳经济,某单位在国家科研部门的支持下,进行技术攻关,采用了新工艺,把二氧化碳转化为一种可利用的化工产品.已知该单位每月的处理量最少为400吨,最多为600吨,月处理成本y(元)与月处理量x(吨)之间的函数关系可近似地表示为:y=x2-200x+80000,且每处理一吨二氧化碳得到可利用的化工产品价值为100元.
该单位每月能否获利?如果获利,求出最大利润;如果不获利,则国家至少需要补贴多少元才能使该单位不亏损?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com