精英家教网 > 高中数学 > 题目详情
精英家教网已知在空间四边形ABCD中,E、F分别是AB、AD的中点,G、H分别是BC、CD上的点,且BG:GC=DH:HC=2:1,则EG、FH、AC的位置关系是(  )
A、两两异面B、两两平行C、交于一点D、两两相交
分析:由题意连接EF、HG、GE、FH、AC,根据比例关系和中位线证明出四边形EFHG是梯形,则两腰和底边上的中线一定相交于一点.
解答:精英家教网解:连接EF、HG、GE、FH、AC,如图:
∵BG:GC=DH:HC=2:1,
∴HG∥DB,且HG=
1
3
BD,
∵E、F分别是AB、AD的中点,
∴EF∥BD,且EF=
1
2
BD,
∴四边形EFHG是梯形,
∵AC是底边上的中线,
∴EG、FH、AC相交于一点.
故选C.
点评:本题考查了线线平行关系,主要根据平面几何中比例关系和中位线来证明线线平行,即平面几何中的知识在空间几何的一个平面内仍然适用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知在空间四边形ABCD中,AB=CD=3,点E、F分别是边BC和AD上的点,并且BE:EC=AF:FD=1:2,EF=
7
,求异面直线AB和CD所成角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•顺义区一模)如图,已知在空间四边形ABCD中,AB=AC=DB=DC,E为BC的中点.
(Ⅰ)求证:平面ADE⊥平面ABC;
(Ⅱ)若AB=5,BC=6,AD=4,求几何体ABCD的体积;
(Ⅲ)在(Ⅱ)的条件下,若G为△ABD的重心,试问在线段BC上是否存在点F,使GF∥平面ADE?若存在,请指出点F在BC上的位置,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

如下图,已知在空间四边形OACB中,OB=OC,AB=AC,求证:OA⊥BC.

查看答案和解析>>

科目:高中数学 来源:2012年北京市顺义区高考数学一模试卷(文科)(解析版) 题型:解答题

如图,已知在空间四边形ABCD中,AB=AC=DB=DC,E为BC的中点.
(Ⅰ)求证:平面ADE⊥平面ABC;
(Ⅱ)若AB=5,BC=6,AD=4,求几何体ABCD的体积;
(Ⅲ)在(Ⅱ)的条件下,若G为△ABD的重心,试问在线段BC上是否存在点F,使GF∥平面ADE?若存在,请指出点F在BC上的位置,若不存在,请说明理由.

查看答案和解析>>

同步练习册答案