【题目】口袋中装有2个白球和n(n≥2,nN*)个红球.每次从袋中摸出2个球(每次摸球后把这2个球放回口袋中),若摸出的2个球颜色相同则为中奖,否则为不中奖.
(I)用含n的代数式表示1次摸球中奖的概率;
(Ⅱ)若n=3,求3次摸球中恰有1次中奖的概率;
(III)记3次摸球中恰有1次中奖的概率为f(p),当f(p)取得最大值时,求n的值.
【答案】(I);(II);(III)当f(p)取得最大值时,n的值为2.
【解析】试题分析:
(1)由题意结合古典概型公式可得所求概率值为;
(2)利用二项分布可得3次摸球中恰有1次中奖的概率是;
(3)结合概率函数的解析式可得当f(p)取得最大值时,n的值为2.
试题解析:
(I)设“1次摸球中奖”为事件A,则P(A)=,
(II)由(I)得,若n=3,则1次摸球中奖的概率为p===,
所以3次摸球中,恰有1次中奖的概率为P3(1)=,
(III)设“1次摸球中奖”的概率为p,
则3次摸球中,恰有1次中奖的概率为
f(p)=Cp(1-p)2 =3p3-6p2+3p(0<p<1),
因为f'(p)=9p2-12p+3=3(p-1)(3p-1),
所以,当p∈(0, )时,f(p)单调递增;当p∈(,1)时,f(p)单调递减,
所以,当p=时,f(p)取得最大值.
令,解得n=2,n=1(舍去).
所以,当f(p)取得最大值时,n的值为2.
科目:高中数学 来源: 题型:
【题目】某商场经营一批进价为30元/件的商品,在市场试销中发现,此商品的销售单价x元与日销售量y件之间有如下所表示的关系.
x | … | 30 | 40 | 45 | 50 | … |
y | … | 60 | 30 | 15 | 0 | … |
(1)在所给的坐标系中,如图,根据表格提供的数据描出实数对(x,y)的对应点,并确定y与x的一个函数关系式y=f(x);
(2)设经营此商品的日销售利润为P元,根据上述关系,写出P关于x的函数关系式,并指出销售单价x为多少时,才能获得最大日销售利润?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某市将建一个制药厂,但该厂投产后预计每天要排放大约80吨工业废气,这将造成极大的环境污染.为了保护环境,市政府决定支持该厂贷款引进废气处理设备来减少废气的排放,该设备可以将废气转化为某种化工产品和符合排放要求的气体,经测算,制药厂每天利用设备处理废气的综合成本(元)与废气处理量(吨)之间的函数关系可近似地表示为,且每处理吨工业废气可得价值为元的某种化工产品并将之利润全部用来补贴废气处理.
(1)若该制药厂每天废气处理量计划定位20吨时,那么工厂需要每天投入的废气处理资金为多少元?
(2)若该制药厂每天废气处理量计划定为吨,且工厂不用投入废气处理资金就能完成计划的处理量,求的取值范围;
(3)若该制药厂每天废气处理量计划定为()吨,且市政府决定为处理每吨废气至少补贴制药厂元以确保该厂完成计划的处理量总是不用投入废气处理资金,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,直三棱柱ABC-A1B1C1中, AB=AC=AA1,AB⊥AC,M是CC1的中点,N是BC的中点,点P在线段A1B1上运动.
(Ⅰ)求证:PN⊥AM;
(Ⅱ)试确定点P的位置,使直线PN和平面ABC所成的角
最大.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】据市场分析,南雄市精细化工园某公司生产一种化工产品,当月产量在10吨至25吨时,月生产总成本y(万元)可以看成月产量x(吨)的二次函数;当月产量为10吨时,月总成本为20万元;当月产量为15吨时,月总成本最低为17.5万元,为二次函数的顶点.写出月总成本y(万元)关于月产量x(吨)的函数关系.已知该产品销售价为每吨1.6万元,那么月产量为多少时,可获最大利润?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数,().
(1)若函数与的图象在上有两个不同的交点,求实数的取值范围;
(2)若在上不等式恒成立,求实数的取值范围;
(3)证明:对于时,任意,不等式恒成立.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com