精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆的左、右焦点分别为,点也为抛物线的焦点.(1)若为椭圆上两点,且线段的中点为,求直线的斜率;

(2)若过椭圆的右焦点作两条互相垂直的直线分别交椭圆于,设线段的长分别为,证明是定值.

【答案】(1)(2)见解析

【解析】分析:(1)先利用抛物线的焦点是椭圆的焦点求出,进而确定椭圆的标准方程,再利用点差法求直线的斜率;(2)设出直线的方程,联立直线和椭圆的方程,得到关于的一元二次方程,利用根与系数的关系进行求解.

详解:因为抛物线的焦点为,所以,故.

所以椭圆.

(1)设,则

两式相减得

的中点为,所以.

所以.

显然,点在椭圆内部,所以直线的斜率为.

(2)椭圆右焦点.

当直线的斜率不存在或者为时,.

当直线的斜率存在且不为时,设直线的方程为

,联立方程得

消去并化简得

因为

所以.

所以

同理可得.

所以为定值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】若四面体的三组对棱分别相等,即,则________.(写出所有正确结论的编号)

①四面体每个面的面积相等

②四面体每组对棱相互垂直

③连接四面体每组对棱中点的线段相互垂直平分

④从四面体每个顶点出发的三条棱的长都可以作为一个三角形的三边长

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某商场销售某种品牌的空调器,每周周初购进一定数量的空调器,商场每销售一台空调器可获利500元,若供大于求,则每台多余的空调器需交保管费100元;若供不应求,则可从其他商店调剂供应,此时每台空调器仅获利润200元. (Ⅰ)若该商场周初购进20台空调器,求当周的利润(单位:元)关于当周需求量n(单位:台,n∈N)的函数解析式f(n);
(Ⅱ)该商场记录了去年夏天(共10周)空调器需求量n(单位:台),整理得表:

周需求量n

18

19

20

21

22

频数

1

2

3

3

1

以10周记录的各需求量的频率作为各需求量发生的概率,若商场周初购进20台空调器,X表示当周的利润(单位:元),求X的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某轮胎集团有限公司生产的轮胎的宽度 (单位: )服从正态分布,公司规定:轮胎宽度不在内将被退回生产部重新生产.

(1)求此轮胎不被退回的概率(结果精确到);

(2)现在该公司有一批轮胎需要进行初步质检,检验方案是从这批轮胎中任取件作检验,这件产品中至少有件不被退回生产部,则称这批轮胎初步质检合格.

()求这批轮胎初步质检合格的概率;

()若质检部连续质检了批轮胎,记为这批轮胎中初步质检合格的批数,求的数学期望.

附:若,则 .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知: =(﹣ sinωx,cosωx), =(cosωx,cosωx),ω>0,记函数f(x)= ,且f(x)的最小正周期为π.
(1)求ω的值;
(2)求f(x)的单调递减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某大型商场为了了解顾客的购物信息,随机在商场收集了位顾客的购物总额(单位元),将数据按照 分成组,制成了如下图所示的频率分布直方图:

该商场每日大约有名顾客,为了增加商场销售总额,近期对一次性购物不低于元的顾客发放纪念品.

(1)求频率分布直方图中的值,并估计每日应准备纪念品的数量;

(2)若每日按分层抽样的方法从购物总额在三组对应的顾客中抽取名顾客,这名顾客中再随机抽取两名超级顾客,每人奖励一个超级礼包,求获得超级礼包的两人来自不同组的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】两条平行直线和圆的位置关系定义为:若两条平行直线和圆有四个不同的公共点,则称两条平行线和圆相交;若两平行直线和圆没有公共点,则称两条平行线和圆相离;若两平行直线和圆有一个、两个或三个不同的公共点,则称两条平行线和圆相切.已知直线,和圆:相切,则实数的取值范围是( )

A. B.

C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆和直线l:

(1)证明:不论取何值时,直线和圆总有两个不同的交点;

(2)求当取何值时,直线被圆截得的弦最短,并求最短的弦长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若变量x,y满足约束条件 ,且z=ax+3y的最小值为7,则a的值为(
A.1
B.2
C.﹣2
D.不确定

查看答案和解析>>

同步练习册答案