精英家教网 > 高中数学 > 题目详情

已知关于x的函数f(x)=+bx2+cx+bc,其导函数为f+(x).令g(x)=∣f (x) ∣,记函数g(x)在区间[-1、1]上的最大值为M.

   (Ⅰ)如果函数f(x)在x=1处有极值-,试确定b、c的值:

  (Ⅱ)若∣b∣>1,证明对任意的c,都有M>2: w.w.w.k.s.5.u.c.o.m    

   (Ⅲ)若M≧K对任意的b、c恒成立,试求k的最大值。

(Ⅰ) (Ⅱ)略(Ⅲ)


解析:

本小题主要考察函数、函数的导数和不等式等基础知识,考察综合运用数学知识进行推理论证的能力和份额类讨论的思想(满分14分)

(I)解:,由处有极值

可得

解得

,则,此时没有极值;

,则

变化时,的变化情况如下表:

1

0

+

0

极小值

极大值

时,有极大值,故即为所求。

(Ⅱ)证法1:

时,函数的对称轴位于区间之外。

上的最值在两端点处取得

应是中较大的一个

证法2(反证法):因为,所以函数的对称轴位于区间之外,

上的最值在两端点处取得。

应是中较大的一个

假设,则

 w.w.w.k.s.5.u.c.o.m    

将上述两式相加得:

,导致矛盾,

(Ⅲ)解法1:

(1)当时,由(Ⅱ)可知

(2)当时,函数)的对称轴位于区间内,w.w.w.k.s.5.u.c.o.m    

此时

①若

于是

②若,则

于是

综上,对任意的都有

而当时,在区间上的最大值

对任意的恒成立的的最大值为

解法2:

(1)当时,由(Ⅱ)可知;w.w.w.k.s.5.u.c.o.m    

(2)当时,函数的对称轴位于区间内,

此时

 w.w.w.k.s.5.u.c.o.m    

,即

下同解法1

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知关于x的函数f(x)=-
1
3
x3+bx2+cx+bc,其导函数为f′(x).令g(x)=|f′(x)|,记函数g(x)在区间[-1、1]上的最大值为M.
(Ⅰ)如果函数f(x)在x=1处有极值-
4
3
,试确定b、c的值:
(Ⅱ)若|b|>1,证明对任意的c,都有M>2
(Ⅲ)若M≧K对任意的b、c恒成立,试求k的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知关于x的函数f(x)=-
1
3
x3
+bx2+cx+bc,如果函数f(x)在x=1处有极值-
4
3
,试确定b、c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知关于x的函数f(x)=x2+2ax+b(其中a,b∈R)
(Ⅰ)求函数|f(x)|的单调区间;
(Ⅱ)令t=a2-b.若存在实数m,使得|f(m)|≤
1
4
与|f(m+1)|≤
1
4
同时成立,求t的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知关于x的函数f(x)=mx-1,(其中m>1),设a>b>c>1,则
f(a)
a
f(b)
b
f(c)
c
的大小关系是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知关于x的函数f(x)=(-2a+3b-5)x+8a-5b-1.如果x∈[-1,1]时,其图象恒在x轴的上方,则
b
a
的取值范围是
(-∞,
3
2
)∪(3,+∞)
(-∞,
3
2
)∪(3,+∞)

查看答案和解析>>

同步练习册答案