本题考查等差数列和等比数列的通项公式的和对数的运算法则,特别是问题(2)的设置有新意,关键是恒等式的解题方法(对应系数相等)是解题的关键,属中档题.
(1)根据前n项和与通项公式的关系可知
①
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823232755014441.png)
时,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823232755045755.png)
;
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823232755216710.png)
;综上,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823232754873523.png)
,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823232754670521.png)
②由
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823232754624561.png)
,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823232755341598.png)
,(
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823232755014441.png)
)两式相减得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823232755513539.png)
即
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823232755544633.png)
,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823232755014441.png)
;由
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823232755591514.png)
得,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823232755606388.png)
∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823232755622491.png)
是以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823232755638208.png)
为首项,公比为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823232755669338.png)
的等比数列,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823232754920669.png)
,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823232754670521.png)
得到结论。
(2)因为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823232755716796.png)
,那么利用定义判定单调性,进而得到最值。
解:(1)①
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823232755014441.png)
时,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823232755045755.png)
;
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823232755216710.png)
;综上,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823232754873523.png)
,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823232754670521.png)
②由
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823232754624561.png)
,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823232755341598.png)
,(
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823232755014441.png)
)两式相减得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823232755513539.png)
即
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823232755544633.png)
,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823232755014441.png)
;由
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823232755591514.png)
得,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823232755606388.png)
∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823232755622491.png)
是以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823232755638208.png)
为首项,公比为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823232755669338.png)
的等比数列,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823232754920669.png)
,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823232754670521.png)
。
(2)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823232755716796.png)
,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232327566982196.png)
∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823232756792491.png)
时,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823232756808537.png)
,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823232756839441.png)
,即
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823232756854471.png)
;
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823232756870422.png)
时,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823232756901523.png)
,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823232756932450.png)
,即
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823232757120479.png)
∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823232757260446.png)
的最大项为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823232757276318.png)
,即存在正整数3,使得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823232754967454.png)
对
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823232754670521.png)
恒成立。