精英家教网 > 高中数学 > 题目详情
10.正方体ABCD-A1B1C1D1中,E、F分别是对角线A1B1、B1C1的中点.求证:EF∥平面ABCD.

分析 由三角形中位线定理得EF∥A1C1,由正方体性质得AC∥A1C1,从而EF∥AC,由此能证明EF∥平面ABCD

解答 证明:正方体ABCD-A1B1C1D1中,
∵E、F分别是对角线A1B1、B1C1的中点,
∴EF∥A1C1
∵AC∥A1C1
∴EF∥AC,
∵EF?平面ABCD,AC?平面ABCD,
∴EF∥平面ABCD.

点评 本题考查线面平行的证明,是基础题,解题时要认真审题,注意空间思维能力的培养.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.计算
(1)lg25-lg5•lg20+2lg2-(lg2)2
(2)($\frac{27}{8}$)${\;}^{\frac{2}{3}}$+log16(-2)2-($\frac{2}{3}$)-2-($\sqrt{3}$+1)0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知全集U={x∈Z|1≤x≤10},A={1,3,5,6,9,10},B={1,2,5,6,7,9,10},则A∩∁UB=(  )
A.{1,5,6,9,10}B.{1,2,3,4,5,6,9,10}
C.{7,8}D.{3}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.在△ABC中,角A、B、C的对边分别是a、b、c,则a>b是cosA<cosB的(  )
A.充分非必要条件B.必要非充分条件
C.充分且必要条件D.不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知集合$A=\{x|\frac{x+2}{4-x}>0\},B=\{x|{x^2}-3ax+2{a^2}<0\}$.
(1)若B⊆A,求实数a的取值范围;
(2)若A∩B=∅,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.设f(x)=ex-a(x+1).(e是自然对数的底数)
(Ⅰ)若f(x)≥0对一切x≥-1恒成立,求a的取值范围;
(Ⅱ)求证:($\frac{2015}{2016}$)1008$<\frac{1}{\sqrt{e}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.两圆x2+y2=4与(x+1)2+(y-1)2=1的位置关系是(  )
A.内含B.相交C.相切D.相离

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.关于函数f(x)=-cos2x-($\frac{2}{3}$)|x|+$\frac{3}{2}$,有下面四个结论,其中正确结论的是(  )
A.f(x)是奇函数B.f(x)是增函数
C.当x>2015时,f(x)>$\frac{1}{2}$恒成立D.f(x)的最小值是-$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知双曲线$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的两焦点为F1(-4,0),F2(4,0),过F2作x轴的垂线交双曲线于A,B两点,若△ABF1内切圆的半径为a,则此双曲线方程为$\frac{{x}^{2}}{24-8\sqrt{5}}-\frac{{y}^{2}}{384-128\sqrt{5}}$=1.

查看答案和解析>>

同步练习册答案