精英家教网 > 高中数学 > 题目详情

【题目】已知函数

1)讨论的单调性;

2)若上是单调增函数,求实数的取值范围.

【答案】(1)见解析;(2).

【解析】

1)求出函数的定义域以及导数,结合定义域,讨论情况下,导数的正负,即可得到的单调性;

(2)求出,则上是单调增函数等价于上恒成立,分离参数,即恒成立,令

利用导数求出函数上的最大值,即可得到实数的取值范围

1)函数,则函数的定义域为

①当时,故函数上单调递增;

②当时,在单调递减;

上单调递增。

综上所述:当时,函数上单调递增;

时,函数上为单调递减,在上为单调递减增

2)由,得

若函数 上的单调增函数,则上恒成立,

即不等式上恒成立.也即上恒成立.

,则

时,

上为减函数,则

所以,即的取值范围为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】定义在上的函数若满足:①对任意,都有;②对任意,都有,则称函数为“中心捺函数”,其中点称为函数的中心.已知函数是以为中心的“中心捺函数”,若满足不等式,当时,的取值范围为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲、乙两台机床同时生产一种零件,其质量按测试指标划分:指标大于或等于100为优品,大于等于90且小于100为合格品,小于90为次品,现随机抽取这两台机床生产的零件各100件进行检测,检测结果统计如下:

测试指标

[8590

[9095

[95100

[100105

[105110

甲机床

8

12

40

32

8

乙机床

7

18

40

29

6

1)试分别估计甲机床、乙机床生产的零件为优品的概率;

2)甲机床生产1件零件,若是优品可盈利160元,合格品可盈利100元,次品则亏损20元,假设甲机床某天生产50件零件,请估计甲机床该天的利润(单位:元);

3)从甲、乙机床生产的零件指标在[9095)内的零件中,采用分层抽样的方法抽取5件,从这5件中任意抽取2件进行质量分析,求这2件都是乙机床生产的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出如下四个命题:①若“”为假命题,则均为假命题;②命题“若,则”的否命题为“若,则”; ③“,则”的否定是“,则”;④在中,“”是“”的充要条件.其中正确的命题的个数是( )

A. 1B. 2C. 3D. 4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某企业为了解下属某部门对本企业职工的服务情况,随机访问50名职工,根据这50名职工对该部门的评分,绘制频率分布直方图(如图所示),其中样本数据分组区间为

1)求频率分布直方图中的值;

2)估计该企业的职工对该部门评分不低于80的概率;

3)从评分在的受访职工中,随机抽取2人,求此2人评分都在的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-5:不等式选讲

已知函数.

(1)求不等式的解集;

(2)设,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若曲线在点处的切线与直线平行,求的值;

(2)讨论函数的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】求下列不等式的解集:

1

2

3

4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义域和值域均为[-aa]的函数y=y=gx)的图象如图所示,其中acb0,给出下列四个结论正确结论的是(  

A.方程f[gx]=0有且仅有三个解B.方程g[fx]=0有且仅有三个解

C.方程f[fx]=0有且仅有九个解D.方程g[gx]=0有且仅有一个解

查看答案和解析>>

同步练习册答案