精英家教网 > 高中数学 > 题目详情
11.若实数x,y满足不等式组$\left\{\begin{array}{l}y≤3\\ 3x+7y-24≤0\\ x+3y-8≥0\end{array}\right.$,则z=|x|+2y的最大值是(  )
A.6B.7C.8D.9

分析 根据题意先画出满足约束条件的平面区域,然后分析平面区域里各个角点,令z=|x|+2y,进一步求出目标函数z=|x|+2y的最大值.

解答 解:由约束条件$\left\{\begin{array}{l}y≤3\\ 3x+7y-24≤0\\ x+3y-8≥0\end{array}\right.$作出可行域如图,
z=|x|+2y表示一条折线(图中虚线),
联立$\left\{\begin{array}{l}{y=3}\\{x+3y-8=0}\end{array}\right.$,解得C(-1,3),
联立$\left\{\begin{array}{l}{y=3}\\{3x+7y-24=0}\end{array}\right.$,解得B(1,3),
A(8,0),
把三个角点A,B,C的坐标代入目标函数z=|x|+2y,
可得当目标函数过A时,z有最大值为8.
故选:C.

点评 本题考查简单的线性规划,考查了数形结合的解题思想方法,该题我们采用“角点法”,其步骤为:①由约束条件画出可行域,②求出可行域各个角点的坐标,③将坐标逐一代入目标函数,④验证求出最优解,此题是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=$\frac{ax+b}{{{x^2}+1}}$(x∈R,a、b为实数),且曲线y=f(x)在点$P(\frac{1}{3},f(\frac{1}{3}))$处的切线l的方程是9x+10y-33=0.
(1)求实数a,b的值;
(2)现将切线方程改写为y=$\frac{3}{10}$(11-3x),并记g(x)=$\frac{3}{10}$(11-3x),当x∈[0,2]时,试比较f(x)与g(x)的大小关系.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.若函数f(x)=2sin(ωx+φ)(ω≠0,φ>0)是偶函数,则φ的最小值为$\frac{π}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.设向量$\overrightarrow{a}$=(1,2),$\overrightarrow{b}$=(2,3),若向量$\overrightarrow{a}$-λ$\overrightarrow{b}$与向量$\overrightarrow{c}$=(-5,-6)共线,则λ的值为$\frac{4}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.若l、m、n是互不相同的空间直线,α,β不是重合的平面,则下列命题中为真命题的是(  )
A.若α∥β,l?α,n?β,则l∥nB.若α⊥β,l?α,则l⊥β
C.若l⊥α,l?β,则α⊥βD.若l⊥n,m⊥n,则l∥m

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.若实数x,y满足不等式组$\left\{\begin{array}{l}{y≤3}\\{3x+7y-24≤0}\\{x+3y-8≥0}\end{array}\right.$,则z=x+2y的最大值是(  )
A.6B.7C.8D.9

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知球内接正三棱锥的底边边长为3,高为4,求外接球的半径.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知全集U=R,集合A={x|(x+2)(x-1)>0},B={x|-4≤x<0},则A∪(∁UB)为(  )
A.{x|x<-2或x≥0}B.{x|x<-2或x>1}C.{x|x<-4或x≥0}D.{x|x<-4或x>1}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.计算:
(1)$\root{3}{{(-4)}^{3}}$-($\frac{1}{2}$)0+${0.25}^{\frac{1}{2}}$×($\frac{-1}{\sqrt{2}}$)4
(2)${(0.064)}^{-\frac{1}{3}}$-(-$\frac{5}{9}$)0+${[(-2)^{3}]}^{-\frac{4}{3}}$+16-0.75+${(0.01)}^{\frac{1}{2}}$.

查看答案和解析>>

同步练习册答案