精英家教网 > 高中数学 > 题目详情
给出命题:“已知a、b、c、d是实数,若a≠b且c≠d,则a+c≠b+d”.对原命题、逆命题、否命题、逆否命题而言,其中真命题( )
A.0个
B.1个
C.2个
D.4个
【答案】分析:由原命题已知a、b、c、d是实数,若a≠b且c≠d,则a+c≠b+d”我们可以举出反例,判断原命题的真假,再由逆命题的定义,我们可以写出原命题的逆命题,举出反例,也可判断逆命题的对错,然后根据互为逆否的两个命题真假性相同,我们可以得到结论.
解答:解:原命题是假命题,如:3≠5,4≠2,但3+4=5+2.
逆命题为“a+c≠b+d”,则a≠b且c≠d也是假命题,
如:3+4≠3+5中,a=b=3,c=4≠d=5.
由原命题与逆否命题等价,
知否命题和逆否命题均为假命题,
故选A
点评:本题考查的知识点是四种命题的真假关系,根据互为逆否的两个命题真假性相同是解答本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

9、给出命题:
(1)在空间里,垂直于同一平面的两个平面平行;
(2)设l,m是不同的直线,α是一个平面,若l⊥α,l∥m,则m⊥α;
(3)已知α,β表示两个不同平面,m为平面α内的一条直线,则“α⊥β”是“m⊥β”的充要条件;
(4)a,b是两条异面直线,P为空间一点,过P总可以作一个平面与a,b之一垂直,与另一个平行.
其中正确命题个数是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

3、给出下列命题
①若直线l与平面α内的一条直线平行,则l∥α;
②若平面α⊥平面β,且α∩β=l,则过α内一点P与l垂直的直线垂直于平面β;
③?x0∈(3,+∞),x0∉(2,+∞);
④已知a∈R,则“a<2”是“a2<2a”的必要不充分条件.
其中正确命题的个数是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

6、给出如下四个命题:
①对于任意一条直线a,平面α内必有无数条直线与a垂直;
②若α、β是两个不重合的平面,l、m是两条不重合的直线,则α∥β的一个充分而不必要条件是l⊥α,m⊥β,且l∥m;
③已知a、b、c、d是四条不重合的直线,如果a⊥c,a⊥d,b⊥c,b⊥d,则“a∥b”与“c∥d”不可能都不成立;
④已知命题P:若四点不共面,那么这四点中任何三点都不共线.
则命题P的逆否命题是假命题上命题中,正确命题的个数是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,边长为a的正△ABC的中线AF与中位线DE相交于G,已知△A′ED是△AED绕DE旋转过程中的一个图形,现给出下列命题,其中正确的命题有
(1)(2)(3)
(1)(2)(3)
.(填上所有正确命题的序号) 
(1)动点A′在平面ABC上的射影在线段AF上;
(2)三棱锥A′-FED的体积有最大值;
(3)恒有平面A′GF⊥平面BCED;
(4)异面直线A′E与BD不可能互相垂直.

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列命题:
①已知
a
b
,则
a
•(
b
+
c
)+
c•
(
b
-
a
)=
b
c

②A、B、M、N为空间四点,若
BA
BM
BN
不构成空间的一个基底,则A、B、M、N共面;
③已知
a
b
,则
a
b
与任何向量不构成空间的一个基底;
④已知{
a
b
c
}
是空间的一个基底,则基向量
a
b
可以与向量
m
=
a
+
c
构成空间另一个基底.
正确命题个数是(  )

查看答案和解析>>

同步练习册答案