A. | f(x1)<f(x2) | B. | f(x1)>f(x2) | ||
C. | f(x1)=f(x2) | D. | f(x1)<f(x2)和f(x1)=f(x2)都有可能 |
分析 找到f(x)的对称轴x=-1,再考虑到以-1<$\frac{1}{2}$(x1+x2)<$\frac{1}{2}$,当$\frac{1}{2}$(x1+x2)=-1时,此时f(x1)=f(x2),再通过图象平移求得.
解答 解:∵0<a<3,由函数表达式 f(x)=ax2+2ax+4=a(x+1)2+4-a知,
其对称轴为x=-1,又 x1+x2=1-a,
所以$\frac{1}{2}$(x1+x2)=$\frac{1}{2}$(1-a),
∵0<a<3,
∴-2<1-a<1,
∴-1<$\frac{1}{2}$(1-a)<$\frac{1}{2}$,
当$\frac{1}{2}$(x1+x2)=-1时,此时f(x1)=f(x2),
当图象向右移动时,又x1<x2,
所以f(x1)<f(x2).
故选:A.
点评 本题考查二次函数的图象和性质,主要是对称轴与区间的问题,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 1 | B. | 0 | C. | -1 | D. | -2 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com