精英家教网 > 高中数学 > 题目详情
3.已知函数f(x)=ax2+2ax+4(0<a<3),若x1<x2,x1+x2=1-a,则(  )
A.f(x1)<f(x2B.f(x1)>f(x2
C.f(x1)=f(x2D.f(x1)<f(x2)和f(x1)=f(x2)都有可能

分析 找到f(x)的对称轴x=-1,再考虑到以-1<$\frac{1}{2}$(x1+x2<$\frac{1}{2}$,当$\frac{1}{2}$(x1+x2)=-1时,此时f(x1)=f(x2),再通过图象平移求得.

解答 解:∵0<a<3,由函数表达式 f(x)=ax2+2ax+4=a(x+1)2+4-a知,
其对称轴为x=-1,又 x1+x2=1-a,
所以$\frac{1}{2}$(x1+x2)=$\frac{1}{2}$(1-a),
∵0<a<3,
∴-2<1-a<1,
∴-1<$\frac{1}{2}$(1-a)<$\frac{1}{2}$,
当$\frac{1}{2}$(x1+x2)=-1时,此时f(x1)=f(x2),
当图象向右移动时,又x1<x2
所以f(x1)<f(x2).
故选:A.

点评 本题考查二次函数的图象和性质,主要是对称轴与区间的问题,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

13.已知函数f(x)=x2+2x+alnx
(1)若a=-4,求函数f(x)的极值;
(2)若a=1时,证明f(x+1)≤x2+5x+3
(3)当t≥1时,不等式f(2t-1)≥2f(t)-3恒成立,试证明a≤2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知p:对?n∈[-1,1],不等式a2-5a-3≥$\sqrt{{n}^{2}+8}$恒成立;命题q:x2-2x+1-m2≤0(m>0).
(1)若p是真命题,求a的取值范围;
(2)若p是¬q的必要不充分条件,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=Asin(ωx+θ)( A>0,ω>0,|θ|<$\frac{π}{2}$)的最小正周期为π,且图象上有一个最低点为M($\frac{7π}{12}$,-3).
(1)求f(x)的解析式;
(2)求函数f(x)在[0,π]的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知圆O:x2+y2=2,直线l:y=kx-2.
(1)若直线l与圆O交于不同的两点A,B,当$∠AOB=\frac{π}{2}$时,求k的值;
(2)若$k=\frac{1}{2},P$是直线l上的动点,过P作圆O的两条切线PC、PD,切点为C、D,探究:直线CD是否过定点?若过定点则求出该定点,若不存在则说明理由;
(3)若EF、GH为圆O:x2+y2=2的两条相互垂直的弦,垂足为$M({1,\frac{{\sqrt{2}}}{2}})$,求四边形EGFH的面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.如果幂函数f(x)的图象经过点(2,8),则f(3)=27.设g(x)=f(x)+x-m,若函数g(x)在(2,3)上有零点,则实数m的取值范围是10<m<30.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知集合A={x|x2+2x-3>0},集合B是不等式x2+mx+1>0对于x∈R恒成立的m构成的集合.
(1)求集合A与B;
(2)求(∁RA)∩B.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知等差数列{an}满足a1+a2=4,a7-a4=6,则数列{$\frac{1}{{a}_{n}{a}_{n+1}}$}的前n项和Sn=$\frac{n}{2n+1}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知函数$f(x)={log_2}\frac{1-tanx}{1+tanx}$,若$f(\frac{π}{2}+a)=1$,则$f(\frac{π}{2}-a)$=(  )
A.1B.0C.-1D.-2

查看答案和解析>>

同步练习册答案