A. | $-\frac{1}{2}$ | B. | $-\frac{1}{4}$ | C. | 0 | D. | $-\frac{1}{8}$ |
分析 根据已知可得函数y=f(x)是周期为2的周期函数,结合$x∈[0,\frac{1}{2}]$时,f(x)=-x2,可得答案.
解答 解:∵函数y=f(x)是定义在R上的奇函数,且f(t)=f(1-t),
∴f(x+2)=f[1-(x+2)]=f(-x-1)=-f(x+1)=-f[1-(x+1)]=-f(-x)=f(x),
即函数y=f(x)是周期为2的周期函数,
故f(2015)=f(1)=-f(0),
又∵$x∈[0,\frac{1}{2}]$时,f(x)=-x2,
∴f(2015)=f(1)=-f(0)=0,
故选:C
点评 本题考查的知识点是函数的奇偶性,函数的对称性,函数的周期性,函数求值,根据已知分析出函数y=f(x)是周期为2的周期函数,是解答的关键.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 若a≤1且b≤1,则a+b≤2 | B. | 若a≤1或b≤1,则a+b≤2 | ||
C. | 若a+b≤2,则a≤1且b≤1 | D. | 若a+b≤2,则a≤1或b≤1 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | {1,3} | B. | {1,2,3} | C. | {1,2,3,4} | D. | {1,3,4} |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com