分析 (1)通过对an+2=2an+1-an+2变形可知an+2-an+1=an+1-an+2,进而可知数列{an+1-an}是以1为首项、2为公差的等差数列;
(2)通过(1)可知an+1-an=2n-1,利用累加法计算即得结论.
解答 (1)证明:∵an+2=2an+1-an+2,
∴an+2-an+1=an+1-an+2,
又∵a2-a1=2-1=1,
∴数列{an+1-an}是以1为首项、2为公差的等差数列,
即数列{bn}是等差数列;
(2)解:由(1)可知an+1-an=1+2(n-1)=2n-1,
∴an-an-1=2(n-1)-1,
an-1-an-2=2(n-2)-1,
…
a2-a1=2•1-1,
累加得,an-a1=2[1+2+…+(n-1)]-(n-1)
=2•$\frac{n(n-1)}{2}$-n+1
=n2-2n+1,
∴an=a1+n2-2n+1=n2-2n+2,
∴数列{an}的通项公式an=n2-2n+2.
点评 本题考查等差数列的判定及数列的通项,对表达式的灵活变形是解决本题的关键,注意解题方法的积累,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | ①③ | B. | ②③④ | C. | ①②④ | D. | ①④ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | f(x)=2ex-3 | B. | f(x)=$\frac{2}{{e}^{x}}$-3 | C. | f(x)=2ex+3 | D. | f(x)=-$\frac{2}{{e}^{x}}$+3 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com