精英家教网 > 高中数学 > 题目详情

【题目】某公司的甲、乙两名工程师因为工作需要,各自选购一台笔记本电脑.该公司提供了三款笔记本电脑作为备选,这三款笔记本电脑在某电商平台的销量和用户评分如下表所示:

型号

销量(台)

2000

2000

4000

用户评分

8

6.5

9.5

若甲选购某款笔记本电脑的概率与对应的销量成正比,乙选购某款笔记本电脑的概率与对应的用户评分减去5的值成正比,且他们两人选购笔记本电脑互不影响.

(1)求甲、乙两人选购不同款笔记本电脑的概率;

(2)若公司给购买这三款笔记本电脑的员工一定的补贴,补贴标准如下表:

型号

补贴(千元)

3

4

5

记甲、乙两人获得的公司补贴之和为千元,求的分布列和数学期望.

【答案】(1),(2)见解析,(千元).

【解析】

1)首先根据题意得到甲选购这三款笔记本电脑的概率分别为,乙选购这三款笔记本电脑的概率分别为,再求求甲、乙两人选购不同款笔记本电脑的概率即可.

(2)首先得到的可能取值为6,7,8,9,10,分别计算其概率,列出分布列求数学期望即可.

(1)根据题意,三款笔记本电脑的销量比为

所以甲选购这三款笔记本电脑的概率分别为.

三款笔记本电脑的用户评分减去5分别为31.54.5

三者之比为,所以乙选购这三款笔记本电脑的概率分别为.

甲、乙两人选购不同款笔记本电脑为事件,则.

(2)的可能取值为678910.

.

所以的分布列为

6

7

8

9

10

所以(千元).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】等边的边长为3,点分别为上的点,且满足(如图1),将沿折起到的位置,使二面角成直二面角,连接 (如图2

1)求证: 平面

2)在线段上是否存在点,使直线与平面所成的角为?若存在,求出的长;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在直角坐标系中,曲线的普通方程为,曲线的参数方程为为参数),以坐标原点为极点,轴正半轴为极轴建立极坐标系,直线的极坐标方程为.

(1)求曲线的极坐标方程和曲线的普通方程;

(2)直线与曲线在第一象限内的交点为,过点的直线交曲线两点,且的中点为,求直线的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数(其中是自然对数的底数),

(Ⅰ)求函数的极值;

(Ⅱ)设,若满足,试判断方程的实数根个数,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某支教队有8名老师,现欲从中随机选出2名老师参加志愿活动,

(1)若规定选出的至少有一名女老师,则共有18种不同的需安排方案,试求该支教队男、女老师的人数;

(2)在(1)的条件下,记为选出的2位老师中女老师的人数,写出的分布列.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中为自然对数的底数.

(Ⅰ)当时,求证:时,

(Ⅱ)当时,计论函数的极值点个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知命题:函数的图像恒过定点;命题:若函数为偶函数,则函数的图象关于直线对称,则下列命题为真命题的是( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中为自然对数的底数.

(Ⅰ)试判断函数的单调性;

(Ⅱ)当时,不等式恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】以直角坐标系的原点为极坐标系的极点,轴的正半轴为极轴.已知曲线的极坐标方程为上一动点,,点的轨迹为

1)求曲线的极坐标方程,并化为直角坐标方程;

2)若点,直线的参数方程为参数),直线与曲线的交点为,当取最小值时,求直线的普通方程.

查看答案和解析>>

同步练习册答案