【题目】某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间[20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:
最高气温 | [10,15) | [15,20) | [20,25) | [25,30) | [30,35) | [35,40) |
天数 | 2 | 16 | 36 | 25 | 7 | 4 |
以最高气温位于各区间的频率代替最高气温位于该区间的概率.
(Ⅰ)求六月份这种酸奶一天的需求量X(单位:瓶)的分布列;
(Ⅱ)设六月份一天销售这种酸奶的利润为Y(单位:元),当六月份这种酸奶一天的进货量n(单位:瓶)为多少时,Y的数学期望达到最大值?
【答案】解:(Ⅰ)由题意知X的可能取值为200,300,500,
P(X=200)= =0.2,
P(X=300)= ,
P(X=500)= =0.4,
∴X的分布列为:
X | 200 | 300 | 500 |
P | 0.2 | 0.4 | 0.4 |
(Ⅱ)当n≤200时,Y=n(6﹣4)=2n≤400,EY≤400,
当200<n≤300时,
若x=200,则Y=200×(6﹣4)+(n﹣200)×2﹣4)=800﹣2n,
若x≥300,则Y=n(6﹣4)=2n,
∴EY=p(x=200)×(800﹣2n)+p(x≥300)×2n=0.2(800﹣2n)+0.8=1.2n+160,
∴EY≤1.2×300+160=520,
当300<n≤500时,若x=200,则Y=800﹣2n,
若x=300,则Y=300×(6﹣4)+(n﹣300)×(2﹣4)=1200﹣2n,
∴当n=300时,(EY)max=640﹣0.4×300=520,
若x=500,则Y=2n,
∴EY=0.2×(800﹣2n)+0.4(1200﹣2n)+0.4×2n=640﹣0.4n,
当n≥500时,Y= ,
EY=0.2(800﹣2n)+0.4(1200﹣2n)+0.4(2000﹣2n)=1440﹣2n,
∴EY≤1440﹣2×500=440.
综上,当n=300时,EY最大值为520元.
【解析】(Ⅰ)由题意知X的可能取值为200,300,500,分别求出相应的概率,由此能求出X的分布列.
(Ⅱ)当n≤200时,Y=n(6﹣4)=2n≤400,EY≤400;当200<n≤300时,EY≤1.2×300+160=520;当300<n≤500时,n=300时,(EY)max=640﹣0.4×300=520;当n≥500时,EY≤1440﹣2×500=440.从而得到当n=300时,EY最大值为520元.
【考点精析】认真审题,首先需要了解离散型随机变量及其分布列(在射击、产品检验等例子中,对于随机变量X可能取的值,我们可以按一定次序一一列出,这样的随机变量叫做离散型随机变量.离散型随机变量的分布列:一般的,设离散型随机变量X可能取的值为x1,x2,.....,xi,......,xn,X取每一个值 xi(i=1,2,......)的概率P(ξ=xi)=Pi,则称表为离散型随机变量X 的概率分布,简称分布列).
科目:高中数学 来源: 题型:
【题目】学校对校园进行绿化,移栽香樟和桂花两种大树各2株,若香樟的成活率为,桂花的成活率为,假设每棵树成活与否是相互独立的.求:
(Ⅰ)两种树各成活一株的概率;
(Ⅱ)设ξ表示两种树成活的总株数,求ξ的分布列及数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】汕头某通讯设备厂为适应市场需求,提高效益,特投入98万元引进世界先进设备奔腾6号,并马上投入生产.第一年需要的各种费用是12万元,从第二年开始,所需费用会比上一年增加4万元,而每年因引入该设备可获得的年利润为50万元.
请你根据以上数据,解决下列问题:(1)引进该设备多少年后,收回成本并开始盈利?(2)引进该设备若干年后,有两种处理方案:第一种:年平均盈利达到最大值时,以26万元的价格卖出;第二种:盈利总额达到最大值时,以8万元的价格卖出.问哪种方案较为合算?并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】因金融危机,某公司的出口额下降,为此有关专家提出两种促进出口的方案,每种方案都需要分两年实施。若实施方案一,预计第一年可以使出口额恢复到危机前的倍、倍、倍的概率分别为、、;第二年可以使出口额为第一年的倍、倍的概率分别为、。若实施方案二,预计第一年可以使出口额恢复到危机前的倍、倍、倍的概率分别为、、;第二年可以使出口额为第一年的倍、倍的概率分别为、。实施每种方案第一年与第二年相互独立。令表示方案实施两年后出口额达到危机前的倍数。
(1)写出的分布列;
(2)实施哪种方案,两年后出口额超过危机前出口额的概率更大?
(3)不管哪种方案,如果实施两年后出口额达不到、恰好达到、超过危机前出口额,预计利润分别为万元、万元、万元,问实施哪种方案的平均利润更大?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知过原点的动直线l与圆相交于不同的两点A,B.
(1)求线段AB的中点M的轨迹C的方程;
(2)是否存在实数k,使得直线L:y=k(x﹣4)与曲线C只有一个交点?若存在,求出k的取值范围;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=ln x-a(x-1),g(x)=ex.
(1)求函数f(x)的单调区间;
(2)若函数h(x)=f(x+1)+g(x),当x>0时,h(x)>1恒成立,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知0<a<b,且a+b=1,则下列不等式中正确的是( )
A.log2a>0
B.2a﹣b<
C.log2a+log2b<﹣2
D.2( + )<
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下表是最近十届奥运会的年份、届别、主办国,以及主办国在上届获得的金牌数、当届
获得的金牌数的统计数据:
年份 | 1972 | 1976 | 1980 | 1984 | 1988 | 1992 | 1996 | 2000 | 2004 | 2008 |
届别 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 |
主办国家 | 联邦 德国 | 加拿大 | 苏联 | 美国 | 韩国 | 西班牙 | 美国 | 澳大 利亚 | 希腊 | 中国 |
上届金牌数 | 5 | 0 | 49 | 未参加 | 6 | 1 | 37 | 9 | 4 | 32 |
当界金牌数 | 13 | 0 | 80 | 83 | 12 | 13 | 44 | 16 | 6 | 51 |
某体育爱好组织,利用上表研究所获金牌数与主办奥运会之间的关系,
(1)求出主办国在上届所获金牌数(设为)与在当届所获金牌数(设为)之间的线性回归方程
其中
(2)在2008年第29届北京奥运会上日本获得9块金牌,则据此线性回归方程估计在2020 年第 32 届东
京奥运会上日本将获得的金牌数为(所有金牌数精确到整数)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数和在的图象如图所示:
给出下列四个命题:
(1)方程有且仅有6个根;
(2)方程有且仅有3个根;
(3)方程有且仅有5个根;
(4)方程有且仅有4个根.
其中正确命题的个数是( )
A. 4个B. 3个C. 2个D. 1个
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com