【题目】已知函数f(x)=ex·(a++lnx),其中a∈R.
(I)若曲线y=f(x)在x=1处的切线与直线y=-垂直,求a的值;
(II)当a∈(0,ln2)时,证明:f(x)存在极小值.
【答案】(1)a=0(2)见解析
【解析】分析:(1)由题意,求得函数的导数,由,即可求得的值;
(2)求得导数,得到与同号,令,求得,求得函数在存在,使得,进而得到在上点单调性,即可作出证明.
详解:(I)f(x)的导函数为f'(x)=ex·(a++lnx)+ex·(-)
=ex·(a+-+lnx).
依题意,有f'(1)=e·(a+1)=e,
解得a=0.
(II)由f'(x)=ex·(a+-+lnx)及ex>0知,f'(x)与a+-+lnx同号.
令g(x)=a+-+lnx,
则g'(x)==.
所以对任意x(0,+),有g'(x)>0,故g(x)在(0,+)单调递增.
因为a∈(0,ln2),所以g(1)=a+l>0,g()=a+ln<0,
故存在x0∈(,1),使得g(x0)=0.
f(x)与f'(x)在区间(,1)上的情况如下:
x | (,x0) | x0 | (x0,1) |
f'(x) | - | 0 | + |
f(x) | ↘ | 极小值 | ↗ |
所以f(x)在区间(,x0)上单调递减,在区间(x0,1)上单调递增.
所以f(x)存在极小值f(x0).
科目:高中数学 来源: 题型:
【题目】设函数f(x)=|x-a|+x,其中a>0.
(1)当a=3时,求不等式f(x)≥x+4的解集;
(2)若不等式f(x)≥x+2a2在x∈[1,3]恒成立,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】北方某市一次全市高中女生身高统计调查数据显示:全市20000名高中女生的身高(单位:)服从正态分布.现从某高中女生中随机抽取50名测量身高,测量发现被测学生身高全部在和之间,现将测量结果按如下方式分成6组:第1组,第2组,…,第6组,下图是按上述分组方法得到的频率分布直方图.
(1)求这50名女生身高不低于172的人数;
(2)在这50名女生身高不低于172的人中任意抽取2人,将该2人中身高排名(从高到低)在全市前260名的人数记为,求的数学期望.
参数数据:,
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知等差数列{an}满足a3=5,a5﹣2a2=3,又等比数列{bn}中,b1=3且公比q=3.
(Ⅰ)求数列{an},{bn}的通项公式;
(Ⅱ)若cn=an+bn , 求数列{cn}的前n项和Sn .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,△ABC是边长为4的等边三角形,△ABD是等腰直角三角形,AD⊥BD,平面ABC⊥平面ABD,且EC⊥平面ABC,EC=2.
(1)证明:DE∥平面ABC;
(2)证明:AD⊥BE.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数f(x)=|x+2|﹣|x﹣1|
(I)画出函数y=f(x)的图象;
(II)若关于x的不等式f(x)+4≥|1﹣2m|有解,求实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知AB为半圆O的直径,AB=4,C为半圆上一点,过点C作半圆的切线CD,过点A作AD⊥CD于D,交半圆于点E,DE=1.
(Ⅰ)求证:AC平分∠BAD;
(Ⅱ)求BC的长.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数,已知曲线在点处的切线与直线平行
(Ⅰ)求的值;
(Ⅱ)是否存在自然数,使得方程在内存在唯一的根?如果存在,求出;如果不存在,请说明理由。
(Ⅲ)设函数(表示中的较小者),求的最大值。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com