【题目】已知圆C:x2+y2﹣6x﹣4y+4=0,点P(6,0).
(1)求过点P且与圆C相切的直线方程l;
(2)若圆M与圆C外切,且与x轴切于点P,求圆M的方程.
【答案】
(1)解:圆C化为标准方程是(x﹣3)2+(y﹣2)2=9
故圆心坐标为C(3,2)半径r=3.
设切线l的方程为x=λy+6
即x﹣λy﹣6=0,由点到直线的距离公式得 ,解得λ= 或λ=0.
所以切线l的方程为 5x﹣12y﹣30=0或x=6
(2)解:设圆心M(6,b),则半径r=|b|
∴要使圆M与圆C外切,则须有:|MC|=3+|b|
∴ 化简得4b+6|b|=4解得 或b=﹣2
所以圆M的方程为 或(x﹣6)2+(y+2)2=4
【解析】(1)设切线l的方程为x=λy+6,由点到直线的距离公式得 ,解得λ= 或λ=0,即可求过点P且与圆C相切的直线方程l;(2)设圆心M(6,b),则半径r=|b|,要使圆M与圆C外切,则须有:|MC|=3+|b|,求出b,即可求圆M的方程.
科目:高中数学 来源: 题型:
【题目】已知椭圆经过点, 的四个顶点构成的四边形面积为.
(1)求椭圆的方程;
(2)在椭圆上是否存在相异两点,使其满足:①直线与直线的斜率互为相反数;②线段的中点在轴上,若存在,求出的平分线与椭圆相交所得弦的弦长;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列{bn}是首项b1=1,b4=10的等差数列,设bn+2=3 an(n∈n*).
(1)求证:{an}是等比数列;
(2)记cn= ,求数列{cn}的前n项和Sn;
(3)记dn=(3n+1)Sn , 若对任意正整数n,不等式 + +…+ > 恒成立,求整数m的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知定理:“实数m,n为常数,若函数h(x)满足h(m+x)+h(m﹣x)=2n,则函数y=h(x)的图象关于点(m,n)成中心对称”.
(1)已知函数f(x)= 的图象关于点(1,b)成中心对称,求实数b的值;
(2)已知函数g(x)满足g(2+x)+g(﹣x)=4,当x∈[0,2]时,都有g(x)≤3成立,且当x∈[0,1]时,g(x)=2k(x﹣1)+1 , 求实数k的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某商店计划每天购进某商品若干件,商店每销售1件该商品可获利50元.若供大于求,剩余商品全部退回,则每件商品亏损10元;若供不应求,则从外部调剂,此时每件调剂商品可获利30元.
(Ⅰ)若商店一天购进该商品10件,求当天的利润y(单位:元)关于当天需求量n(单位:件,n∈N)的函数解析式;
(Ⅱ)商店记录了50天该商品的日需求量(单位:件),整理得下表:
日需求量n | 8 | 9 | 10 | 11 | 12 |
频数 | 10 | 10 | 15 | 10 | 5 |
①假设该店在这50天内每天购进10件该商品,求这50天的日利润(单位:元)的平均数;
②若该店一天购进10件该商品,记“当天的利润在区间”为事件A,求P(A)的估计值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com