精英家教网 > 高中数学 > 题目详情
17.已知约束条件$\left\{\begin{array}{l}x+y-3≥0\\ x-2y+3≥0\\ x≤a\end{array}\right.$,表示的可行域为D,其中a>1,点(x0,y0)∈D,点(m,n)∈D若3x0-y0与$\frac{n+1}{m}$的最小值相等,则实数a等于2.

分析 作出不等式组对应的平面区域,利用z的几何意义即可得到结论.

解答 解:先根据约束条件画出可行域,
设z1=$\frac{y+1}{x}$=$\frac{n+1}{m}$,
将z1的值转化可行域内的Q点与点P(0,-1)连线的斜率的值,
当Q点在可行域内的B(a,3-a)时,斜率最小,最小值为$\frac{3-a+1}{a}$=$\frac{4-a}{a}$,
设z2=3x-y,
当z2=3x-y过点A(1,2)时3x0-y0的值最小,最小值为3×1-2=1,
∵3x0-y0与$\frac{n+1}{m}$的最小值相等,
∴$\frac{4-a}{a}$=1,
解得a=2,
故答案为:2

点评 本题主要考查了用平面区域二元一次不等式组,以及简单的转化思想和数形结合的思想,属中档题.目标函数有唯一最优解是我们最常见的问题,这类问题一般要分三步:画出可行域、求出关键点、定出最优解.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.设直线l过双曲线C的一个焦点,且与C的一条对称轴垂直,l与C交于A,B两点,|AB|为C的实轴长的2倍,则C的离心率为(  )
A.$\sqrt{3}$B.$\sqrt{2}$C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{2}$=1(a>0)的长轴长为4,则C的离心率为(  )
A.$\frac{1}{2}$B.$\frac{\sqrt{2}}{2}$C.$\frac{\sqrt{3}}{2}$D.$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.将函数$y=3sin(2x+\frac{π}{6})$的图象上各点沿x轴向右平移$\frac{π}{6}$个单位长度,所得函数图象的一个对称中心为(  )
A.$(\frac{7π}{12},0)$B.$(\frac{π}{6},0)$C.$(\frac{5π}{8},0)$D.$(\frac{2π}{3},-3)$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.从某市统考的学生数学考试卷中随机抽查100份数学试卷作为样本,分别统计出这些试卷总分,由总分得到如下的频率分布直方图.
(1)求这100份数学试卷的样本平均分$\overline x$和样本方差s2
(同一组中的数据用该组区间的中点值作代表)
(2)由直方图可以认为,这批学生的数学总分Z服从正态分布N(μ,σ2),其中μ近似为样本平均数$\overline x$,σ2近似为样本方差s2
①利用该正态分布,求P(81<z<119);
②记X表示2400名学生的数学总分位于区间(81,119)的人数,利用①的结果,求EX(用样本的分布区估计总体的分布).
附:$\sqrt{366}$≈19,$\sqrt{326}$≈18,若Z=~N(μ,2),则P(μ-σ2),则P(μ-σ<Z<μ+σ)=0.6826,P(μ-2σ<Z<μ+2σ)=0.9544.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.下列命题中正确的是(  )
A.两条直线都和同一个平面平行,则这两条直线平行
B.两条直线没有公共点,则这两条直线平行
C.两条直线都和第三条直线垂直,则这两条直线平行
D.一条直线和一个平面内所有直线没有公共点,则这条直线和这个平面平行

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知p:-2≤x≤10,q:x2-2x+1-m2≤0(m>0),若¬p是¬q的必要非充分条件,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图,在三棱柱ABC-A1B1C1中,AA1⊥平面ABC,AB=AA1=2,AC=$\sqrt{5}$,BC=3,M,N分别为B1C1,AA1的中点
(1)求证:AB⊥平面AA1C1C
(2)判断MN与平面ABC1的位置关系,求四面体ABC1M的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.设命题 p:?n∈N,3n≥n2+1,则¬p为(  )
A.?n∈N,3n<n2+1B.$?{n_0}∈N,{3^{n_0}}<n_0^2+1$
C.?n∈N,3n≤n2+1D.$?{n_0}∈N,{3^{n_0}}≥n_0^2+1$

查看答案和解析>>

同步练习册答案