精英家教网 > 高中数学 > 题目详情
精英家教网选修4-1:几何证明选讲
如图,已知C点在⊙O直径的延长线上,CA切⊙O于A点,DC是∠ACB的平分线,交AE于F点,交AB于D点.
(1)求∠ADF的度数;
(2)若AB=AC,求AC:BC.
分析:(1)由弦切角定理可得∠B=∠EAC,由DC是∠ACB的平分线,可得∠ACD=∠DCB,进而∠ADF=∠AFD,由BE为⊙O的直径,结合圆周角定理的推论,可得∠ADF的度数;
(2)由(1)的结论,易得△ACE∽△BCA,根据三角形相似的性质可得
AC
BC
=
AE
AB
,又由AB=AC,可得AC:BC=tanB,求出B角大小后,即可得到答案.
解答:(1)因为AC为⊙O的切线,所以∠B=∠EAC
因为DC是∠ACB的平分线,所以∠ACD=∠DCB
所以∠B+∠DCB=∠EAC+∠ACD,即∠ADF=∠AFD,
又因为BE为⊙O的直径,所以∠DAE=90°.
所以∠ADF=
1
2
(180°-∠DAE)=45°

(2)因为∠B=∠EAC,所以∠ACB=∠ACB,所以△ACE∽△BCA,所以
AC
BC
=
AE
AB

在△ABC中,又因为AB=AC,所以∠B=∠ACB=30°,Rt△ABE中,
AC
BC
=
AE
AB
=tanB=tan30°=
3
3
点评:本题考查的知识点是弦切角,三角形相似的性质,其中(1)中是要根据已知及弦切角定理结合等量代换得到∠ADF=∠AFD,(2)的关键是根据三角形相似的性质得到
AC
BC
=
AE
AB
=tanB.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网选修4-1:几何证明选讲
如图,圆O的直径AB=10,弦DE⊥AB于点H,HB=2.
(1)求DE的长;
(2)延长ED到P,过P作圆O的切线,切点为C,若PC=2
5
,求PD的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网A、选修4-1:几何证明选讲 
如图,PA与⊙O相切于点A,D为PA的中点,
过点D引割线交⊙O于B,C两点,求证:∠DPB=∠DCP.
B.选修4-2:矩阵与变换
已知矩阵M=
12
2x
的一个特征值为3,求另一个特征值及其对应的一个特征向量.
C.选修4-4:坐标系与参数方程
在极坐标系中,圆C的方程为ρ=2
2
sin(θ+
π
4
)
,以极点为坐标原点,极轴为x轴的正半轴建立平面直角坐标系,直线l的参数方程为
x=t
y=1+2t
(t为参数),判断直线l和圆C的位置关系.
D.选修4-5:不等式选讲
求函数y=
1-x
+
4+2x
的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

选修4-1:几何证明选讲
自圆O外一点P引圆的一条切线PA,切点为A,M为PA的中点,过点M引圆O的割线交该圆于B、C两点,且∠BMP=100°,∠BPC=40°,求∠MPB的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•徐州模拟)选修4-1:几何证明选讲
如图,直线AB经过圆上O的点C,并且OA=OB,CA=CB,圆O交于直线OB于E,D,连接EC,CD,若tan∠CED=
12
,圆O的半径为3,求OA的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•南京二模)选修4-1:几何证明选讲
如图,圆O是等腰三角形ABC的外接圆,AB=AC,延长BC到点D,使得CD=AC,连结AD交圆O于点E,连结BE与AC交于点F,求证:AE2=EF•BE.

查看答案和解析>>

同步练习册答案